
Hybrid Evolutionary Static Scheduling for Heterogeneous Systems

Cristina Boeres
Instituto de Computação,

Universidade Federal Fluminense
Niterói, RJ, Brazil
boeres@ic.uff.br

Eyder Rios
Instituto de Computação,

Universidade Federal Fluminense
Niterói, RJ, Brazil

erios@ic.uff.br

Luiz Satoru Ochi
Instituto de Computação,

Universidade Federal Fluminense
Niterói, RJ, Brazil
satoru@ic.uff.br

Abstract- The complexity of the static scheduling prob-
lem on heterogeneous resources has motivated the devel-
opment of low complexity heuristics such as list schedul-
ing. However, the greedy characteristic of such heuris-
tics can, in many cases, generate poor results. This
work proposes the integration of list scheduling heuris-
tics with search mechanisms based on both genetic algo-
rithms and GRASP, to efficiently schedule tasks on dis-
tributed systems. The results show that the hybrid ap-
proach is robust and can converge quickly to good qual-
ity solutions.

1 Introduction

The efficient scheduling of an application is the key issue
to achieve good performance from distributed computing
systems. When accurate estimated execution and commu-
nication costs can be derived accurately, sophisticate static
scheduling mechanisms can be applied at compile time.

The principal objective of static task scheduling is to
find a schedule with the minimal length or makespan, for
a given application and architectural model on bounded or
unbounded number of processors. Given that popular dis-
tributed systems (e.g. clusters of PCs and Computational
Grids [8]) tend to be made up of a variety of resources, it
is imperative to consider processor heterogeneity and com-
munication costs between processors.

Finding the optimal schedule for a parallel application on
a set of processors such that the execution time is minimised
is known to be an NP-complete problem [12]. Many heuris-
tics have been proposed for homogeneous [3, 11] and het-
erogeneous environments [2, 15]. In general, these heuris-
tics lead to sub-optimal schedules, although for specific
classes of application and architectural models, optimal so-
lutions can be found [4]. The main difficulty faced by these
heuristics is how to tackle the variety the application and
architecture characteristics, which influence the scheduling
problem.

Search approaches like genetic algorithms have previ-
ously been applied to solve NP-complete problems and in
many cases, successful results have been obtained. Usually,
algorithms in this class achieve very efficient solutions for
problems in which various distinct characteristics are spec-
ified. A number of genetic algorithm approaches have been
proposed for the task scheduling problem [5, 7, 16]. Most of
them consider that either the application is composed of in-
dependent tasks (jobs) or that communication cost between
processors is negligible.

In this work, we propose a hybrid genetic algorithm ap-
proach, where an application is scheduled on set of het-
erogeneous resources in such a way that both the sched-
ule length and the number of necessary processors are min-
imized. Not only performance characteristics of the pro-
cessors are considered but also the costs associated with
communication between distinct processors. The hybrid
approach combines mechanisms of both genetic algorithms
and list scheduling heuristics. In Section 2, some important
definitions and assumptions are given. Then, in Section 3
we summarise the related work from the literature. The
proposed hybrid genetic scheduling heuristic is described
in details in Section 4. We also propose a heuristic based
on GRASP [13] and list scheduling algorithms in Section 5.
A series of experiments are described and analysed in Sec-
tion 6, and finally, conclusions and future work are pre-
sented in Section 7.

2 Definitions

This work deals with applications which can be represented
by a directed acyclic graph (

�����
)
�����	��
���

, where the
set of � vertices,

�
, represents the tasks of the application

and the set of arcs
�

, the precedence relation among them.
The function � ������ denotes the amount of work associated
with task

�������
and � ������
����� is the weight associated with

the arc
�	����
���������

representing the amount of data units
to be sent from

���
to
���

. The sets of immediate predeces-
sor and successors of

� �
is given by "!$#�% �	� � and &(')�*� ��� � ,

respectively.
We wish here to tackle the problem of statically schedul-

ing a given application
�

on a distributed set of hetero-
geneous processors efficiently. In the architectural model
used here, + �-, /.
(010(0*
 "2�3 is the set of 4 fully con-
nected processors and 5 � � the heterogeneity factor of �
such that the execution time of task

� �
on � is given by

� �	���687 5 � �� . When two adjacent tasks, say,
�9�

and
�6�

,
are allocated to distinct processors, the cost associated with
the communication of � �	�*��
����� data units is � �	����
������7;:

,
where the latency

:
is the average transmission time per

byte incurred on the links of the system. On the other
hand, if

���
and

�6�
are allocated to the same processor, the

communication cost associated with
�	� �
�� �

is negligible.
Note that

� �
only starts execution when all the necessary

data are available on the processor allocated to it. There-
fore, the start time of the task

� �
on processor � depends

on the time in which the data sent by its immediate prede-
cessors are available at � and when � can execute

� �
, i.e.

& �*��� �
 � � ����� ,�� !$# # � � 9
 ������
	����������������� , & �*�	���
 � �� � �	��� ��
5 � � ��� � �	���
�� � �� : 3 3 , where

� !$#�# � � is the time in which
the processor � is free to execute

� �
and � is the processor

allocated to
� �

, immediate predecessor of
� �

.
The objective of the scheduling algorithm developed in

this work is to define a static schedule ! so that the execu-
tion time of

�
or makespan " � ! is minimised, where

" � ! � ������ � ��# , & �*�	� �
 !%$$� ��� � �&� � �	� � '� 5 � "!%$$� �	� � � 3
and where "!�$$� �	� � is the processor assigned to task

� �
in the

schedule ! . Before describing the strategies under study, a
number of important concepts must be defined.

The bottom level of a task
� �

, denoted by (*)�#�+ #�) �	� � , is
the length of the longest path from

����� �
to a sink task

(a task without successors) considering the costs associated
with the input graph and the target system. In heteroge-
neous systems, the average computation time of a task

�$�
is taken into account when calculating (*) #�+ #�) ���(� [15], i.e.
� �	���� � �-,/. �10*��2 � �����63� 5 � ���54 4 and for all

���
such that

&(')�*� ����� 76�98
(*)�#�+ #�) �	� � � � ��� � :� �;�%�� 0 �=<�>�?@?5�A� � � , � �	� �
�� � '�1:B� (*) #�+ #�) ��� � 3

(1)
given that (*) #�+ #�) ������ � � �����6 for those

�����-�
with

&(')�*� ����� �C8
. On the other hand, the top level of a task���

, denoted by
�)�#�+ #�) �	� �� , is the length of the longest path

from a source task to
�9�

. Given that
�)�#�+ #�) �	��� ��ED

for all��� � �
with !$# % ������ �F8

, for the remaining tasks
�)�#�+ #�) �	� � � �;�%��G0*���� ����������� ,��)�#�+ #�) �	� � &� � �	� � H� � �	� �
�� � '�(: 3

(2)
Note that these two priorities use the concept of average
computation and communication costs since they are cal-
culated prior to the effective scheduling of the tasks. Both(*)�#�+ #�) ��� and

�)�#�+ #�) ��� are priorities which incorporate im-
portant characteristics of the application and architecture,
on the attempt to provide the order in which tasks should be
scheduled by a heuristic. Moreover, for each task, the sum-
mation of both concepts may represent the critical path of�

when executed on the architecture + [11].

3 Related Work

In recent years, a number of differing static scheduling
strategies have been proposed for heterogeneous proces-
sors [2]. Interesting enough, amongst these strategies two
aspects stand out. First, the majority of heterogeneous
scheduling heuristics belong to the class of list schedul-
ing algorithms [2, 15]. Algorithms in this class have been
shown to be of low complexity compared to other ap-
proaches such as clustering algorithms [3] or metaheuris-
tics like genetic algorithms and GRASP [7, 13] and thus,
favour a faster decision making. Furthermore, list schedul-
ing algorithms can easily be applied when a fixed number
of processors are available. As a pitfall however, for the
homogeneous processor scheduling problem the results ob-
tained by this class of heuristics tend to be far from optimal,

particularly when communication costs are higher than the
average computation costs of the application.

A number of list scheduling algorithm has been proposed
in the literature. The main differences between them are
principally related to the priorities adopted. Basically, at
each iteration, two phases are executed, as seen in Algo-
rithm 1. Firstly, in the task choice phase (line 3), the task
with the highest priority is selected. Secondly, in the proces-
sor choice phase (line 4), another priority is used to select
the processor to which the chosen task will be assigned.

IKJMLON
;1

while
IHJ9PLRQ

do2 S
= task choice T IKJVU

;3 W
= processor choice T SYX�Z U

;4 IKJML[IKJ]_^ S=`
;5

end6

Algorithm 1: A List Scheduling Framework

The Heterogeneous Earliest Finish Time (HEFT) is con-
sidered one of the best algorithms for scheduling tasks onto
heterogeneous processors [15]. Initially, HEFT calculates
the blevel (Equation 1) of all of the tasks prior to making
scheduling decisions. HEFT orders all the tasks in

�
in the

decreasing order of their blevel, with ties being broken at
random. During the scheduling phase, the algorithm selects
the unscheduled task

� �
with highest priority and looks for

the earliest time that
���

can start on each processor � , in-
serting

���
in idle periods between two previously scheduled

tasks, if possible. Finally, the processor chosen is the one
where the task

���
can finish the earliest.

The Earliest Time First (ETF) algorithm is a very well-
known list scheduler [10] which computes the earliest time
of all ready tasks on the set of idle processors at each it-
eration. The task scheduled is given by the task-processor
pair

��� �
 � that starts the earliest, i.e. task
� �

is allocated
to processor � . Note that, ETF is an algorithm designed
for scheduling

��� �
s onto a limited set of homogeneous

processors. We adapted ETF to heterogeneous processors,
where the finish times of the tasks are evaluated.

Among the metaheuristiscs, more distinctively the Ge-
netic Algorithms (GAs) are being shown to produce effi-
cient solutions for combinatorial problems. The genetic al-
gorithm simulates the natural evolution process by generat-
ing a population (usually using a randomised heuristic) that
represents a set of solutions for a given problem, and grad-
ually, by using genetic operators, like crossover and muta-
tion, evolves to a better region in the solution space. Usu-
ally, solutions to the optimisation problem are specified as
a set of chromosomes, called a population. In [16], for the
static scheduling problem, each chromosome, representing
a feasible schedule, is composed of 4 strings (4 being the
number of available processors), where for each processor
 � there is a string which represents the tasks scheduled to
 � . The initial population is generated randomly, respect-
ing the precedence relation specified in

�
. Also, solutions

can be generated by a level-scheduling algorithm [16]. The
selection of chromosomes is based on the roulette wheel

scheme and the crossover operator is implemented by cut-
ting pairs of chromosomes randomly.

The Problem Space Genetic Algorithm (PSGA) also
schedules tasks on a set of heterogeneous processors [7].
However, rather than representing a schedule, each gene of
the chromosome specifies a priority associated with each
task of the input

�����
. Then, a trivial list scheduling al-

gorithm is used to schedule the tasks onto the processors
based on the priorities specified by the chromosome. The
only list scheduling heuristic used was the Earliest Finish
Time (EFT) [7].

4 The Hybrid Static Task Scheduling

Growing interested by the scheduling community has lead
researchers to develop list scheduling heuristics for hetero-
geneous processors mainly due to the fact that these algo-
rithms can be easily applied to a fixed number of hetero-
geneous processors. However, they are considered to be
very greedy and may produce solutions far from the opti-
mal one. In this manner, genetic algorithms are considered
here as a technique to exploit the search space so that bet-
ter solutions are achieved. Particularly, we propose a hybrid
evolutionary approach for the static scheduling onto hetero-
geneous processors with intercommunication costs which
combines concepts implemented in genetic algorithms with
those from list scheduling [7]. The Hybrid Task Schedul-
ing Genetic Algorithm (HTSGA) produces a variety of lists
of priorities which are decoded by a given list scheduling
heuristic.

Genetic Algorithms usually require long processing
times to achieve efficient solutions for a variety of prob-
lems [14]. However, for the scheduling problem which con-
siders

�����
s, the task precedence reduces the number of

feasible solutions and this, these algorithms require signif-
icant less processing times. In an attempt to decrease this
processing time even further, we adopted the approach in
which the genetic algorithm produces priority lists associ-
ated with the tasks instead of encoding the whole solution.

Decoding Heuristics: Since each chromosome code a
priority list rather than a set of strings, each one being the
tasks allocated to each processor, it is necessary to apply
a static scheduling heuristic to produce the aimed schedule
of

�
. We wish to evaluate the impact of using different

scheduling strategies as decoding heuristics.
The HEFT heuristic is used as one of the decoding

heuristic. In the original proposal, HEFT calculates the
blevel of all of the tasks prior to making scheduling de-
cisions. When used as a decoding heuristic, the priorities
used are those defined in the given chromosome. The Earli-
est Finishing Time (EFT) is also used as a decoding heuris-
tic, as in [7]. In this case, the heuristic schedules the free
task

���
with highest priority specified in the chromosome on

the processor � that minimises its finishing time. We also
adapted the ETF algorithm (the version implemented in this
work for heterogeneous processors) to be used as a decod-
ing heuristic. In this case, the task choice is also performed
using the priorities specified in the chromosomes.

As a matter of notation, let � be the set of de-

coding heuristics used in the hybrid approach. Thus,� � , � ��� �����
���� �����
�� ������� 3 where � ��� �	���
and

� �
� ���
are HEFT and ETF adapted as decoding

heuristics, respectively. Note that these heuristics were se-
lected due to their reasonable performance, as reported in
the literature. However, their performance is dependent on
the class of

� ���
and architectural characteristics. We shall

see that the application of all of the heuristic in � in differ-
ent iterations leads HTSGA to be more efficient than the list
schedulers by their own.

Coding of Solutions and Population Generation: In
each position of the chromosome, the gene � , ����� � ,
represents the priority assigned to the task

� � � �
. For each

population, the members are divided in 5 ��� � � groups,
where the chromosomes of each group are decoded by one
of the 5 decoding heuristics.

Let � $ be the maximum number of chromosomes in
the initial population, then, each gene � of a chromosome
& � , ������� $, given by & � � � is equal to���� ���

� � mod 5 H� �
 if � � D�� ������� $ (*)�#�+ #�) �	� � 9
 if �! D�� � � �
(*)�#�+ #�) �	��� H� !#" � %=$ 4 �%$ �'& �)(1�*&G����� �+
 �'&A�)(1�*&������ �+ 9

if �, D�� ��-����� $
(3)

where (1)�#�+ #�) �	� � and
�)�#�+ #�) �	� � are the priorities defined in

Equations 1 and 2, respectively. Note that & � �
D assures
that the chromosomes of each one of the 5 groups are de-
coded by the same heuristic. The data in & � � D represents
the heuristic in � used to generate the schedule associ-
ated with a chromosome & � considering the priorities & � � � ,��.�! � �/�

.
Fitness Evaluation: Our primary objective in this work

is to find a schedule of a
�����-�

with the minimal
makespan. However, a second objective but no less im-
portant is the minimization of the number of processors re-
quired to execute the given schedule. In distributed systems
like computational grids, resources are shared and therefore,
allocating the smallest number of resources without harm-
ing the application’s execution time will improve the over-
all performance. The fitness of a chromosome & � , to be
minimised, considers both the makespan of the associated
schedule and the number of necessary processors:

� � � � #$& & � & �$ � 4 &� 0" � � % # �1$$% � & �$� �
� � % # �1$$% � & � ��7 � D21 �%354 687:9<; 2>=%? . �

(4)
where % # �1$$% � & � is the schedule produced by the decoding
heuristic & � �
D , � ��� , the respective number of processors
to execute

�
in 4 &� @" � ��� time units (recall that 4 is the

total number of available processors). Obviously, the objec-
tive of HTSGA is to minimize the function

� � � � #$& & ��� , so
that a schedule with the minimal makespan is found. If there
is more than one solution with the same minimal value, the
one with the smallest number of processors is chosen.

Selection of chromosomes: HTSGA also implements
the roulette wheel procedure where priority is given to those
chromosomes with the smallest fitness value. Therefore, the

probability to select a chromosome & � in the population is

 "!%$�(� & � �
� � � � #$& &12���� $R� � � � # & & � & �$,�� ���@��	� . �-� � � � #$& &�2���� $M� � � � #$& & � & �$ (5)

where
� � � � #$& & 2���� is the maximum fitness value consider-

ing all the chromosomes in that population.
Diversification: A diversification procedure is applied

when a series of generations is produced without any im-
provement to the best solution found so far. The diversi-
fication is an opportunity for searching a better result in a
region of the solution space not yet explored. For doing so,
new priorities must be associated with each task

� �
, which

in turn, are functions of the (*) #�+ #�) and
�)�#�+ #�) . The diversifi-

cation is implemented based on a given priority ! �@$! � and
a given perturbation value "#�! � � , such that, a new chromo-
some & � is given by:

�� T� UHL �� � T�� mod � U����
, if L��

e
��� � ��� W���WW� �! #" , if %$ �

and � L&�W� �! " � W('� !) "
, if %$ �

and
��� � ��� W���W

(6)
where ! �@$! � �	� � and #�! � � �	� � are proposed in Table 1.* ! �@$! � ������ #�! ��� ������
1 (*) #�+ #�) ��� � !#" � % � 1 �'& �)(1�*&G��� � �+
 ? �'&A�)(1�)&G��� � �+
2

�) #�+ #�) ������ !#" � % � 1,+ &A�%(1�*&G����� �+
 ? + &A�)(1�*&G�A��� �+
3 (*) #�+ #�) ����� &� �) #�+ #�) ������ !#" � % � 1 �'& �)(1�*&G����� �+
 ? �'&A�)(1�)&G�����-�+
4 (*) #�+ #�) ��� � &� �) #�+ #�) ��� � !#" � % � 1,+ &A�%(1�*&G��� � �+
 ? + &A�)(1�*&G�A� � �+

Table 1: Priorities generators for HTSGA.

Crossover Operators: The crossover operator chooses
randomly a pair of individuals & � and & � from the population
and generates, also randomly, two cut-off points �". and � +
which define a segment in each chromosome. Then, the seg-
ment - & ��� � . 9
 & ��� � + /. in & � is swapped with - & � � � . *
 & � � � + 0.
in chromosome & � . The operator is executed in accordance
with a given probability ! ? 1�5<�< .

Mutation Operators: The mutation is performed for a
chromosome under a given probability ! 2 >�� . Let & � be
the chosen chromosome. A perturbation value "#�! ��� (from
Table 1) is applied, and thus

& � � � �32 & � � � , if � � D
& � � � &� "#�! � � � � , if �, D (7)

The HTSGA Algorithm

The HTSGA chooses the best solution of the actual pop-
ulation and migrates it to the next generation. The algo-
rithm stops after a given number �54 #�� of generations. The
pseudo-code of HTSGA can be seen in Algorithm 2. Note
that, if � % � + iterations are performed without any improve-
ment to the best solution, the diversification procedures is
then applied.

Let 6 & be the set of chromosomes that belong to the
population in the) �87 generation. In line 2, the ini-
tial population 6:9 is generated based on the priority pair� ! �@$! . �	���69
 "#�! � . ������� , as given in Equation 3. Then, the
best solution in 6 9 is captured in &<; , based on Function 4.

=?> L��
; @ L&�

;
�A LRQ
;1 BDC L = '�E WF�5W >�G	H) � = TI@ X
 A U ;
 A L

best sched T B�C U ;2

for G L&�
to
�KJ ' = do3 L?M LO^
!A ` ;4

for � L&�
to
� W���W?NPO

do5
�Q L HR=?S ��T T B,M	U�V U ;
 " L HR=WS �!T T BDM	UDV U ;6 XY !�
�
 � S '� T W� �Z0[/\#]0] X
�Q X
 " X#^ V X#^!_ U ;7 T ^ V X#^!_ UHL
mutation T W� �`ba�c X @ Xd^ V X#^�_ U ;8 B,M L BDMfe ^ ^ V Xd^�_�`

;9

end10
1g L best sched T B M U ;11

if
^) = '
�
 T
 g U:h ^) = '
�
 T
!A U then12
 A L
1g ; =?> L��

;13

else14 =W> L =?> �i�
;15

if =?> L L�� S S then16 @ L TI@ mod = Z �! U?���
;17 B,M L = '�E W���W >(G	H) � = TI@ X
�A U ;18
�A L

best sched T BWM U ; =?> L��
;19

end20

end21

end22

return S '�XY� S T
 A U ;23

Algorithm 2: HTSGA - Hybrid Task Scheduling GA

In lines 3 to 22, �j4 #�� populations are generated. In each it-
eration) , the best solution found in the previous generation
is included in the current population 6 & (line 4). At each
iteration of the loop in line 5, a pair of chromosomes & � and
& � are selected randomly and the crossover operator is ap-
plied under probability ! ? 1�5<�< , followed by the mutation
operator (Equation 7). The two new chromosomes

� . and� + are then included in the current population 6 & . In line 11,
the best chromosome &fk of 6 & is found and compared with
the best solution found amongst all populations (lines 12
and 13). If the best chromosome is not updated after a num-
ber � % � + of generations (line 16), new priorities (line 17)
are used to generate new chromosomes (line 18) promoting
diversification of the current population. Finally, HTSGA
returns the schedule associated with the best chromosome
&l; (line 23).

5 Scheduling with GRASP

In general lines, GRASP [13] is a multi-start iterative pro-
cess where each iteration consists of two phases: a construc-
tion and a local search phase. In the construction phase,
a randomised greedy function is used to build up a feasi-
ble solution. During the construction phase, the choice of
the next element to be added is determined by the order-
ing of all candidates in a list (CL) with respect to a greedy
function. Because of the size of CL, a restricted candidate
list (RCL) composed with the best candidates is usually de-
fined. The choice of the candidate in RCL is performed at
random. Then, the solution generated by the construction
phase is refined by a local search procedure.

We also proposed a scheduling heuristic based on

GRASP, called the Hybrid Task Scheduling GRASP
(HTSG). During the construction phase, concepts defined
in GRASP are applied on a list scheduling algorithm (in
our case, we used “randomised” versions of HEFT, ETF
and EFT) in order to overcome their greedy behaviour. Let� � ���
 +
�� be a heuristic which schedules the

��� � �
in

the architecture + considering a random factor
�

used dur-
ing the task choice phase (line 3 of Algorithm 1). At each
iteration of

� � ���
��
��
, the list RCL of ready tasks with

the highest priority is given, the task choice is performed by
choosing randomly a task in RCL in accordance with

�
.

During the local search phase, we implemented the
Topological Assignment and Scheduling Kernel [9] (TASK),
which produces a new schedule based on a given schedule! . The local search performs a critical path analysis of

�
in accordance with ! . Tasks are moved between processors
if the critical path, and consequently, the makespan is min-
imised. A series of movements is performed so that the best
allocation of tasks is found.

We must point out that we implemented in this work a
learning mechanism in order to adapt the best value for

�
.

Let � � � #�! be the maximum number of iterations performed
by HTSG and let

:��
be a list of values assigned to

�
. Dur-

ing the first � � � #1! 4�� iterations, a different value of
� � :	�

is used at each GRASP iteration, and the value of
�

as-
sociated with the best solution is kept. In the remaining� � � #1! 4�� iterations, this best

�
value is then applied.

6 Results and Analysis

The complexity of the static scheduling problem has lead
researchers to tackle the problem for specific classes of�����

s (e.g. join, forks, trees, diamond, or irregular), and
granularities1. Typically, the graph topologies chosen rep-
resent specific classes of applications, while varying the
granularity accounts for a variety of target systems.

In this section, we compare the makespans produced
by HTSGA, HTSG (both proposed here) and PSGA. The
experimental analysis in this paper is based on a suite of
unit execution time, unit data transfer graphs (UET-UDT)�����

s which includes both regular (various sizes of in-trees
(IN), out-trees (OUT) and diamond graphs (DI)) and irreg-
ular graphs (randomly generated (RAN)) [3]. Also, we con-
sidered the Gaussian Elimination (GE) [6] as a real world
application.

In the experiments with the UET-UDT
��� �

s, we de-
fined a computation factor

�
, so that the execution weight

of any task would be
�

. We also varied the latency
:

for dif-
ferent experiments. In this way, we were able to define more
accurately fine and coarse grained instances. We carried out
a series of experiments considering the following parameter
pairs

�<��
�:
for each input

��� �
:
� �
 � , ��

 � and

� � D
 �
which characterise coarse grained instances, and, for fine
grained ones the parameters pairs were

� �
�
 and
� �
 � D .

1Although there exists a number of both formal and mathematical defi-
nitions for the granularity of a ���� [11], loosely speaking it is considered
to be the relationship or ratio between the amount of communication and
computation.

Since the GE’s are coarse grained, only the pairs
� �
 � ,� �
�
 and

� �
 � D were evaluated.
In this initial work, we assumed that a homogeneous net-

work, which can be viewed as modeling a collection of dif-
ferent workstations, interconnected the heterogeneous pro-
cessors or PCs interconnected via a switch. We generated a
number of architecture environment parameters, in order to
simulate different environments with a variety of number of
available processors, and a diversity of heterogeneous fac-
tors. A total of 12 computational environments were used
as the target architecture to execute each

� ���
, considering

also the parameter pair
�<��
�:

.
The parameters of the genetic algorithms compared here,

HTSGA and PSGA, were set to: �j4 #1� � � ��D , �� $ ����D
,

 ! ? Y� <�< ����D��
and "! 2 >�� ��
��

. In the case of HTSG,� � � #�! � � ��D and
: � � ,�D
5D 0 �
5D 0 �

5D 0 �
5D 0 �
 D 0 ��D
 � 0 D 3 .

Also, we executed the original list scheduling algorithms
HEFT and ETF for the sake of comparison.

We performed a total of
����
��

experiments, which only
part of them are reproduced here in tables due to the lack of
space. In Table 2, the columns 2 and 3 shows the number
of times and percentage of the cases that HTSGA produced
worse (, equal (

�
) and better (-) schedules than PSGA

and HTSG, respectively, for each class of
� ���

, consider-
ing all pairs

�<��
�:
and architectures. In the column 4, the

same is reported but for HTSG being compared with PSGA.
The Table 2 shows that HTSGA outperforms PSGA in

all of the cases. Almost the same can be said about HTSG,
which on average produces schedules which are better or
equal than those produced by PSGA in

��� 0 ���
,
��� 0 ���

,��
 0 ���
,
��� 0 ���

and
��� 0 ���

of the cases, for DI, IN, OUT,
RAN and GE, respectively.

HTSGA HTSG
PSGA HTSG PSGA�

0 0,0% 29 5,4% 9 1,7%
DI � 92 21,7% 306 56,7% 155 28,7%

448 78,3% 205 38,0% 376 69,6%�
0 0,0% 66 18,3% 4 1,1%

IN � 242 67,2% 210 58,3% 228 63,3%
118 32,8% 84 23,3% 128 35,6%�

0 0,0% 37 10,3% 17 4,7%
OUT � 249 69,2% 253 70,3% 265 73,6%

111 30,8% 70 19,4% 78 21,7%�
0 0,0% 241 19,1% 7 0,6%

RAN � 811 64,4% 799 63,4% 678 53,8%
449 35,6% 220 17,5% 575 45,6%�

0 0,0% 24 5,6% 29 6,7%
GE � 332 76,9% 318 73,6% 324 75,0%

100 23,1% 90 20,8% 79 18,3%

Table 2: Performance comparison between HTSGA, HTSG and
PSGA in terms of worse ($), same (

L
) and better (

h
) makespans

for each class of !	"$# s

The robustness of HSTGA is due to the fact that a series
of distinct decoding heuristics were applied, together with
the diversification procedure, which produced a new popu-
lation and therefore, new priorities associated with tasks.
The diversification procedure offered an opportunity for
HTSGA to define a different order in which tasks are se-
lected at the task choice phase of their decoding heuristics.
For HTSG, which practically outperforms PSGA in most of

the cases, the analysis on the results showed that both the
local search phase and the use of different randomized list
scheduling algorithms led to better solutions than PSGA.

HTSGA HTSG
(F,L) ETF HEFT PSGA ETF HEFT PSGA
DI

(10,1) 6,3% 1,5% 0,5% 6,2% 1,3% 0,3%
(5,1) 6,1% 4,1% 1,6% 5,9% 3,8% 1,3%
(1,1) 0,6% 21,3% 11,8% 0,8% 21,5% 12,1%
(1,5) 22,6% 32,5% 10,1% 19,6% 29,8% 6,6%
(1,10) 27,4% 32,6% 14,0% 22,2% 27,7% 7,8%
Avg. 12,6% 18,4% 7,6% 10,9% 16,8% 5,6%

IN
(10,1) 12,0% 1,4% 0,1% 12,2% 1,6% 0,3%
(5,1) 11,6% 1,3% 0,3% 11,7% 1,4% 0,4%
(1,1) 4,4% 3,8% 1,1% 4,1% 3,4% 0,8%
(1,5) 15,1% 8,0% 4,6% 22,0% 14,9% 11,4%
(1,10) 18,2% 8,9% 6,0% 28,4% 18,9% 16,0%
Avg. 12,3% 4,7% 2,4% 15,7% 8,0% 5,8%
OUT
(10,1) 2,1% 2,1% 0,3% 2,2% 2,3% 0,5%
(5,1) 2,7% 2,5% 0,4% 2,9% 2,7% 0,6%
(1,1) 2,1% 5,1% 0,4% 2,8% 5,8% 1,2%
(1,5) 19,4% 26,2% 1,7% 18,1% 25,0% 0,1%
(1,10) 26,3% 28,8% 2,7% 23,8% 26,4% -0,8%
Avg. 10,5% 13,0% 1,1% 10,0% 12,4% 0,3%

RAN
(10,1) 21,0% 0,9% 0,1% 21,1% 1,0% 0,2%
(5,1) 21,8% 1,2% 0,1% 21,9% 1,3% 0,2%
(1,1) 26,9% 17,8% 1,0% 28,4% 19,3% 3,0%
(1,5) 22,1% 17,4% 4,7% 22,2% 17,4% 4,7%
(1,10) 17,4% 9,0% 6,9% 16,6% 8,0% 5,9%
Avg. 21,8% 9,2% 2,5% 22,0% 9,4% 2,8%

GE
(1,1) 18,5% 0,1% 0,4% 18,5% 0,1% 0,4%
(1,5) 22,8% 0,8% 0,4% 22,9% 0,8% 0,5%
(1,10) 22,5% 4,3% 0,7% 22,3% 4,0% 0,4%
Avg. 21,3% 1,7% 0,5% 21,2% 1,6% 0,4%

Table 3: Improvement on the makespans

HTSGA and HTSG were never worse than both the orig-
inal HEFT and ETF, what was expected, since these two
heuristics were incorporated to them, somehow. HTSGA
used in one of the iterations the same priorities applied by
HEFT and ETF, and in the case of HTSG, when

� �CD
,

HEFT � � and ETF � � had similar behaviour to their origi-
nal counterpart versions.

One observation that we must point out is that in the
case of fine grained

�����
s, the decoding heuristic that pro-

duced most of the best results was HEFT
���

(in HTSGA)
and HEFT � � (in HTSG). This is due to the mechanism of
inserting tasks in idle periods of time on the processors [15].
When scheduling coarse-grained instances, the respective
versions of ETF on the other hand, produced most of the
best results. Studies in the literature showed that ETF leads
to good results when communication costs are not very
high.

For fine grained in-trees, HTSG is slightly better than
HTSGA due to the TASK local search procedure, since it
clusters independent tasks with common immediate suc-
cessors on the same processor, which is very advanta-
geous when communication costs are high. HTSG thus, re-
lieves the burden caused by the list scheduling approaches.

This list-scheduling algorithm greedily allocated indepen-
dent tasks to distinct processors since they give priority to
the minimisation of each individual finish time rather than
the minimisation of the makespan of the whole application.

We observed that in only 17 cases considering out-trees
HTSG loses to PSGA. Although PSGA used only one de-
coding heuristic (EFT

���
) and has no diversification pro-

cedure, it produced more solutions than HTSG. The same
can be observed when comparing HTSGA with HTSG for
all the

�����
s, but not for the random graphs. Although

HTSGA deals with a bigger population of solutions, for this
class of

�����
s, HTSG produced solutions with makespan

slightly smaller than those generated by the former, on av-
erage. Analysing more closely, we concluded that the ad-
vantage of HTSG was due to the local search TASK.

The Table 3 shows the improvements to the makespan
when comparing HTSGA (columns 2 to 4) and HTSG (the
last three columns) with the original list scheduling algo-
rithms HEFT and ETF, and the genetic algorithm PSGA.
Nicely, both of our proposed algorithms produce schedules
with much smaller makespan mainly for fine grained in-
stances (

�<��
�: � � �
�
 *
1� �
 � D). These experiments shows
the gains that the evolutionary approaches offers, mainly
when we consider heterogeneous processors and high com-
munication costs.

6.1 Empirical Probabilistic Analysis

We performed an empirical probabilistic analysis, as pro-
posed in [1]. We evaluated the probability of the algorithms
implemented in this work to achieve a given solution on a
given time. A number of representative instances were cho-
sen, considering a target architecture with no more than six
heterogeneous processors.

Initially, each one of the algorithms PSGA, HTSGA and
HTSG were executed 200 times in order to generate the tar-
get solutions. These solutions were classified as: the easy
target, which is the arithmetic mean of the worse makespan
of the schedules generated by all of the three heuristics; and
the difficult target which obviously considers the makespan
of the best schedules produced by the same set of heuristics.

Having the easy and difficult targets defined, PSGA,
HTSGA and HTSG were again executed 200 times such
that each execution of the algorithm stops whenever it
achieves a solution with makespan smaller or equal then
the given target, having the respective processing time
recorded. Then, the list

� 7 ��� � .
 � +
10(010(
 � + 9d9�� in non-
decreasing order of processing times taken by each heuris-
tic 5 � , + ! � ��
 � � ! � �
 � � ! � 3 was constructed and
for each � � ��� 7 , an empirical probability "! 7 � � �� �
� � $.+ 54���D=D was calculated. Finally, we plot the three curves
considering the pair

� � �
 "! 7 � � � � , each curve correspond-
ing to each 5 . All the plots can be viewed in Figure 1, for
each instance, considering the ease and difficult targets.

For the diamond
�����

, HTSGA and HTSG converged
to the easy target in less than � D 4 & , � D=D�� of the time, while
+ ! � � , only around � � . The difficult target was achieved
by both HTSGA and HTSG � D�D�� of the times in less than� D=D 4 & although, in this case, HTSGA may be faster. PSGA

however, reached it very few times.
The robustness of HTSGA and HTSG is one of the rea-

sons for this performance. Although HTSG achieved the
target less times than HTSGA, it converged very quickly
due to its local search procedure, mainly for in-trees.
HTSGA actually benefits from it diversification procedure.

The instance in which HTSG did not have a very good
performance when compared with HTSGA and PSGA was
out-trees. The probabilities to achieve the easy target in� D 4 & were � D=D�� ,

��
 0
��
and ��� 0
�� for HTSGA, PSGA

and HTSG, respectively. This may be explained that the two
genetic approaches produces more solutions than HTSG,
leading to a better performance. A similar behaviour was
observed for the difficult target, although PSGA executed
more iterations to converge.

For the random graphs, both HTSG and HTSGA reached
the easy target much faster than PSGA, � D�D�� of the times.
They needed no more than � 4 & while PSGA, a total of� ���$4 & . Their nice performance is justified by the applica-
tion of HEFT. For the difficult target, PSGA never reached
it, while HTSGA and HTSG always converged.

7 Conclusion and Future Work

This paper presented two hybrid metaheuristics to solve the
static task scheduling problem for heterogeneous environ-
ment. The combination of fast traditional list schedulers
with time consuming genetic algorithms, provided a more
efficient and practical way to schedule general

��� �
s on

heterogeneous resources. The use of a variety of priority
lists offered the opportunity for better decision making for
the list scheduling heuristics. HTSGA produced much bet-
ter results than the traditional list schedulers mainly when
communication costs between processors were high. We
also presented a novel hybrid GRASP approach that also
produced efficient results, losing only to HTSGA, on aver-
age, but not to the other heuristics being compared here. As
future work, HTSGA will be applied to other real applica-
tions executed on computational grids. We will also invest
in HTSG, analyzing other mechanisms for local searches as
well as investigate the benefits of implementing the path re-
link mechanism [14].

Acknowledgments

The authors are also partially funded by research grants
from CNPq.

Bibliography

[1] R. M. Aiex, M.G.C. Resende, and C. Ribeiro. Prob-
ability distribution of solution time in GRASP: An
experimental investigation. Journal of Heuristics,
8(3):343–373, 2002.

[2] O. Beaumont, A. Legrand, and Y. Robert. Static
scheduling strategies for heterogeneous systems.
Computing and Informatics, 21:413–430, 2002.

[3] C. Boeres and V.E.F. Rebello. On solving the static
task scheduling problem for real machines. In M. Fi-
allos R. Correa, I. Dutra and F. Gomes, eds, Models
for Parallel and Distributed Computation: Theory, Al-
gorithmic Techniques and Applications, chapter 3, pp
53–84. Kluwer, 2002.

[4] C Boeres and V.E.F. Rebello. Towards optimal task
scheduling for realistic machine models: Theory and
practice. The International Journal of High Perfor-
mance Applications, 17(2):173–190, 2003.

[5] R. Correa, A. Ferreira, and P. Rebreyend. Scheduling
multiprocessor tasks with genetic algorithms. IEEE
Transactions on Parallel and Distributed Systems,
10(8):825–837, 1999.

[6] M. Cosnard and D. Trystram. Parallel Algorithms and
Architectures. Int. Thomson Computer Press, 1995.

[7] M. Dhodhi, I. Ahmad, A. Yatama, and I. Ahmad. An
integrated technique for task matching and schedul-
ing onto distributed heterogeneous computing sys-
tems. Journal of Parallel and Distributed Computing,
62:1338–1361, 2002.

[8] I. Foster and C. Kesselman, editors. The GRID:
Blueprint for a New Computing Infrastructure. 2nd
edition. Morgan Kaufmann, 2004.

[9] M-Y Hu, W. Shu, and J. Gu. Efficient local search for
DAG scheduling. IEEE Transactions on Parallel and
Distributed Systems, 12(6):617–627, June 2001.

[10] J-J. Hwang, Y-C. Chow, F.D. Anger, and C-Y. Lee.
Scheduling precedence graphs in systems with inter-
processor communication times. SIAM J. Comput.,
18(2):244–257, 1989.

[11] Y-K Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Computing Surveys, 31(4), Dec. 1999.

[12] C.H. Papadimitriou and M. Yannakakis. Towards
an architecture-independent analysis of parallel algo-
rithms. SIAM J. Comput., 19:322–328, 1990.

[13] M.G.C. Resende and C. Ribeiro. Greedy random-
ized adpative search procedures. In F. Glover and
G. Kochenberger, editors, Handobook of Metaheuris-
tics, pp 219–249. Kluwer, 2003.

[14] M.G.C. Resende and J.P. Souza, editors. Metaheuris-
tics: Computer Decision-Making. Kluwer, 2003.

[15] H. Topcuoglu, S. Hariri, and M.Y. Wu. Performance-
effective and low-complexity task scheduling for het-
erogeneous computing. IEEE Transactions on Parallel
and Distributed Systems, 13(3):260–274, Mar 2002.

[16] L. Wang, H. J. Siegel, V.R. Roychowdhury, and A. A.
Maciejewski. Task matching and scheduling in het-
erogeneous computing environments using a genetic-
algorithm-based approach. Journal of Parallel Dis-
tributed Computing, 47(1):8–22, 1997.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(a) DI with 256 tasks, easy target: 177 Time (ms)

PSGA
HTSGA

HTSG
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(b) DI with 256 tasks, difficult target: 159 Time (ms)

PSGA
HTSGA

HTSG

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(c) IN with 255 tasks, easy target: 85 Time (ms)

PSGA
HTSGA

HTSG
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(d) IN with 255 tasks, difficult target: 79 Time (ms)

PSGA
HTSGA

HTSG

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100

Pr
ob

ab
ili

ty

(e) OUT with 255 tasks, easy target: 79 Time (ms)

PSGA
HTSGA

HTSG
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(f) OUT with 255 tasks, difficult target: 74 Time (ms)

PSGA
HTSGA

HTSG

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 10 100 1000

Pr
ob

ab
ili

ty

(g) RAN with 140 tasks, easy target: 64 Time (ms)

PSGA
HTSGA

HTSG
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000 10000

Pr
ob

ab
ili

ty

(h) RAN with 140 tasks, difficult target: 53 Time (ms)

PSGA
HTSGA

HTSG

Figure 1: Probabilistic Analysis comparing HTSGA, HTSG and PSGA, considering easy and difficult targets

