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Abstract

This paper presents several strategies for sequential and parallel implemen-
tations of the Greedy Randomized Adaptive Search Procedure (GRASP) and
the Variable Neighborhood Search (VNS) applied to a combinatorial optimiza-
tion problem known as Traveling Purchaser Problem (TPP). The high poten-
tial of these metaheuristics and their hybrid versions (GRASP+VNS) is shown
through the comparison with an algorithm Tabu Search for the TPP, that has
presented the best results for this problem so far.
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1 Introduction

Metaheuristics such as Genetic Algorithm (GA), Greedy Randomized Adaptive Search
Procedures (GRASP),Tabu Search (TS) and Variable Neighborhood Search (VNS)
have been used successfully for solving hard combinatorial optimization problems.

Although metaheuristics aim to eliminate or reduce historical difficulties of con-
ventional construction and local search heuristics, such as premature stops in local
optima solutions distant from an optimal solution in optimization problems, they may
require a large amount of time to find good upper bounds as penalty in many cases.
This fact has motivated the developing of parallel metaheuristics, taking advantage of
the inherent parallelism present in some of them such as GRASP and GA [1] [4] [11].
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Many parallel algorithms of Tabu Search have also been developed [2] [3] probably
because of the excellent results obtained by sequential versions of TS algorithms.

We intend to show in this paper that metaheuristics such as GRASP and VNS
can achieve good results comparable to the best versions of TS, concerning not only
the quality of solutions but the required time as well for solving a generalization of
the Traveling Salesman Problem (TSP) called Traveling Purchaser Problem (TPP).
This paper proposes new sequential and parallel algorithms based on GRASP and
VNS concepts. These algorithms were run on an IBM SP/2 computer using MPI in
the parallel algorithms [15].

The remainder of this paper is organized as follows. Section 2 describes the TPP.
Section 3 presents the sequential and parallel algorithms proposed based on GRASP
and VNS. Computational results are shown in Section 4. Finally, Section 5 concludes
the paper.

2 The Traveling Purchaser Problem

The TPP is classified as NP-Hard and can be seen as a generalization of the Traveling
Salesman Problem (TSP). To describe the TPP we need the following data: a set of n
markets M = {1, 2, · · · , n} plus a source s = {0}; a set of m items K = {1, 2, · · · , m}
to be purchased at n markets; an array P = (pkj) such that k ∈ K, j ∈M , where pkj

is the cost of item k at market j and an array T = (tij) such that i, j ∈M , where tij
is the cost of travel from i to j.

It is assumed that each item is available in at least one market j ∈ M ; in source
s = {0} no item can be purchased; the traveler may pass through a market any
number of times without purchasing an item there; and the traveler may purchase as
many items as there are available at each market. There is a complete symmetrical
graph G = (M, E), without loops, where M is the already defined set of markets and
each edge (i, j) ∈ E represents a link between i and j, such that i, j ∈ M . The aim
of the TPP is to obtain a directed cycle including source s and passing through a
subset J ⊆M such that the total travel and purchase costs are minimized.

Although TPP has been used in many applications such as scheduling and rout-
ing problems, it has not been extensively studied in related literature. TPP was
originally developed by Ramesh [13] who proposed a method based on lexicographic
search procedure. Golden, Levy and Dahl [7] proposed a heuristic based on saving
and insertion concepts. Ong [10] presented a new heuristic based on the algorithm
proposed by Golden, Levy and Dahl called “ Tour - Reduction algorithm”. Voss
[16] [17] presented metaheuristics based on Dynamic Tabu Search for the TPP which
used dynamic strategies for managing of tabu lists. Pearn and Chien [12] proposed
algorithms based on “Commodity-Adding”.

3 Algorithms based on GRASP and VNS

Metaheuristics based on concepts of GRASP [5] [1] [4] and VNS [9] [8] require two
algorithms, one of them for generation of an initial solution and the other for local
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search phase.
Initially, the goal of this work was the analysis of performance of algorithms

GRASP and VNS using the same methods of construction and local search that
were employed in the algorithms proposed by Voss [17]. Thus, the methods Add and
Drop were implemented for construction and Drop for local search. Moreover, other
algorithms of construction and of local search were also proposed.

The following algorithms were developed for construction of initial solutions:

• Add - it consists of a loop where at each step, the market which gives the best
saving is inserted in the partial solution. The loop finishes when all items are
available in the markets of the current solution.

• Drop - this algorithm begins from a feasible solution of the Traveling Salesman
Problem (TSP), which includes all nodes (markets), and then it executes a loop.
At each iteration the node which offers the best saving, in case of being taken
away of the current solution, is removed, since all products keep available in the
remaining markets. The initial route is defined using the algorithm GENIUS
proposed for the TSP [6]. The loop finishes when it is not possible to obtain any
saving by removing markets without violating the constraints of the problem.

• AddGeni - this algorithm is similar to Add, but the criterion of selection of the
next node to be inserted is from the heuristic GENIUS [6].

• DropGeni - this algorithm is similar to Drop, but the criterion of selection of
the node to be removed from the current solution is from the heuristic GENIUS
[6].

• AddRandom - at each step of this algorithm a node is chosen at random to
be inserted in the solution from a constrained candidate list (CCL), that is
composed by k nodes (markets) which offers the best savings, in case of being
inserted, where k is an entry parameter.

• DropRandom - it initiates with a solution containing all markets and at each
step of a loop, a market is selected randomly from a constrained candidate
list CCL, composed by k nodes which offer the best savings, in case of being
removed, where k is an entry parameter.

The following algorithms for local search were also employed:

• AddSearch - it applies Add procedure on an initial solution while the solution
is being improved [17].

• DropSearch - it applies Drop procedure on an initial solution while the solution
is being improved [17].

• AddDropSearch - each node (market) that does not belong to the current solu-
tion, is inserted and the DropSearch procedure is executed.
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• DropAddSearch - each node that belongs to the current solution, is removed
and AddSearch procedure is used.

• SwapSearch - it swaps the positions of pair of nodes on the initial solution for
y iterations, where y is an entry parameter.

• NeighSearch - it builds a list containing p elements chosen at random from the
current solution. Then, these elements are removed from the solution and they
are considered forbidden (they can not be part of the solution for some time).
It executes one of the local search algorithms previously described. The p nodes
(markets) are enabled again and it once more executes one of the local search
algorithms previously described. All these steps are executed for y iterations,
where y is an entry parameter.

• VNSSearch - this algorithm executes NeighSearch in a loop. Initially k = 1 and
if the solution is not improved k is increased (k ← k + 1), otherwise it goes on
using a neighborhood with k = 1.

• HybridSearch - this algorithm is a hybrid procedure including several local
search algorithms: AddSearch; DropSearch; DropAddSearch; AddDropSearch
and SwapSearch. This sequence of algorithms is repeated until no improved
solution is reached.

3.1 Partial Computational Results

Initially all combinations of the procedures of construction and local search described
in the previous section were included in several versions of GRASP and VNS algo-
rithms.

Concerning the GRASP, each of the six algorithms for construction were adapted
(when necessary), using a candidate chosen randomly from a constrained candidate
list instead of the best candidate.

Concerning the VNS, the six algorithms for construction were combined with each
algorithm for local search adapted in a structure VNS like with multiple neighbor-
hoods Ni (i = 1, . . . , k, where k represents the number of neighborhoods considered).
Thus, for example, in the local search Drop, in the first neighborhood N1, at each
step only a node is removed of the current solution, in neighborhood N2, two nodes
are removed simultaneously at each step, etc. In the same way, we adapted the other
algorithms for local search employing a structure with several neighborhoods.

To our best knowledge, there are not test problems for the TPP available in public
sites. Therefore, in order to evaluate the algorithms proposed a set of instances for
the TPP was generated randomly.

At first, all combinations of construction and local search procedures were imple-
mented generating 48 versions of algorithms based on GRASP and 48 based on VNS.
In order to analyze the performance of these algorithms, each of them was tested
for 36 instances of TPP, where the number of markets varied from 50 until 150, the
number of items from 50 until 150, the number of items per market from 1 to 5, the

4



cost of distances from 10 to 300 and finally the cost of items from 10 to 300. The
stop criterion in all cases was 600 seconds. The programs were executed in a node
of an IBM SP/2 computer dedicated exclusively to our tests. The time 600 seconds
was chosen after several tests with different versions of GRASP and VNS. Each one
of the 36 instances was executed 5 times.

We analyzed the performance of these 96 algorithms in the following way. For
each instance i (i = 1, . . . , 36), the best solution called bs(i) obtained among the 96
algorithms is determined. The average error of each algorithm in each instance is de-
termined by the difference in percent of the average of solutions of this algorithm and
bs(i). The average error for each algorithm represents the arithmetic average of the
average errors considering the 36 instances. The best two algorithms GRASP called
GRASP1 and GRASP2, employed for construction and local search the methods Ad-
dRandom - Hybrid and AddGeni - Hybrid, respectively. The best two algorithms
VNS, called VNS1 and VNS2, used for construction and local search DropGeni -
Hybrid and Drop - Hybrid, respectively.

In a second stage of this work, hybrid sequential algorithms were proposed com-
bining GRASP with local search algorithms based on VNS. The two algorithms
GRASP+VNS1 and GRASP+VNS2 that obtained the best average results in the
initial tests, employed AddGeni and AddRandom for construction, and Hybrid for
local search in VNS.

In order to evaluate the performance of our algorithms for solving TPP, we im-
plemented also the algorithms Tabu Search proposed by Voss [17], because they have
given the best results for this problem so far, according to the author. We imple-
mented the two best versions of Tabu Search proposed by Voss, including intensi-
fication, diversification phases and REM (Reverse Elimination Method) and CSM
(Cancellation Sequence Method) dynamic list management. These two versions are
called TABU-CSM and TABU-REM and they use the algorithms Add and Drop for
construction of initial solutions, the algorithm Drop for local search and CSM and
REM for list management respectively. An average of these results are presented in
Table 1 that shows that VNS and GRASP can obtain good results comparable to the
results obtained by Tabu Search. In this table, “Time(s)” indicates the average time
in seconds to obtain the best solution, “Total of best solutions” represents the number
of times in percent that the algorithm achieved bs(i) considering the 36 instances and
“Average error (%)” is calculated as previously described.

Algorithms Average Error (%) Time (s) Total de Best Solutions (%)
GRASP1 0.09 340.72 52.78
GRASP2 0.16 343.75 47.22
VNS1 0.19 318.56 47.22
VNS2 0.11 324.97 44.44
GRASP+VNS1 0.04 327.31 63.89
GRASP+VNS2 0.09 279.50 55.56
TABU+CSM 0.27 302.72 41.67
TABU+REM 0.41 234.69 50.00

Table 1: Average results of TS and the best two versions of GRASP, VNS and
GRASP+VNS

The good performance of the sequential algorithms GRASP, VNS and GRASP+VNS
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motivated the development of different strategies and models of parallel algorithms
based on the sequential algorithms here proposed.

3.2 Strategies for Distributed Parallel Implementations of
GRASP and VNS

In GRASP algorithms, iterations are independent from each other. Therefore, it-
erations may be easily shared among processors. The sharing of iterations among
processors can be considered a load balance problem. In order to balance the itera-
tions among processors we used two strategies: static load balance and dynamic load
balance.

In static load balance model, the number of iterations that each process executes
is determined before the execution. In the proposed algorithms, the number of itera-
tions of the associated sequential algorithm was divided equally by the processes that
take part of the parallel algorithm. Thus, each process executes �itseq/proc	, where
itseq represents the number of iterations executed by the sequential algorithm and
proc represents the number of processes in the distributed algorithm. Each process
executes independently from each other.

In dynamic load balance model, the number of iterations each process executes is
determined during the execution. This kind of balance aims to prevent a slow process
from increasing the execution time of the distributed program. It is obtained by
giving more iterations to faster processes. Two asynchronous algorithms for dynamic
load balance were implemented. One of them uses the master-worker model while
the other is completely distributed.

In the master-worker model, in the beginning of the execution all worker processes
receive a small fixed number of iterations. When a process completes its initial itera-
tions, it sends a message to the master informing this fact. The master either sends
more iterations to the worker or a message of termination.

We propose in this paper a completely distributed parallel GRASP based on dy-
namic load balance. In the completely distributed model, for each process that ex-
ecutes the GRASP algorithm, called pi, there is another process associated (sharing
the same processor), called qi (for 1 ≤ i ≤ w, where w is number of processors), that
is responsible for controlling the number of iterations of the corresponding process pi

and for termination of the distributed program. Process qi stays idle most of time,
therefore it does not compete with pi for the CPU very much.

Initially the iterations are divided equally among the w processors. Each process
pi executes the algorithm for an initial number of iterations. When it finishes, it asks
for more iterations to qi. If qi has available iterations it gives them to pi. Otherwise,
qi asks for more iterations to another process qj (such that 1 ≤ j ≤ w and j �= i),
chosen randomly. Upon receiving extra iterations, process qi forwards them to the
corresponding process pi. If qi does not receive extra iterations, it goes on questioning
other processes until it receives the iterations or it receives refusals from all other
processes. In the latter, qi sends a message of termination to the corresponding
process pi and finishes its execution. Process pi finishes its execution upon receiving
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a message of termination from the associated qi.
The distributed parallel models applied to VNS are akin to those used in GRASP.

So, each process executes a VNS algorithm and the iterations that compose the main
loop of this algorithm is divided by the processes. In the first strategy, static load
balance is employed and each process is executed independently. The second strategy
uses the master-worker model where there is a master process that is responsible for
the distribution of the iterations among the worker processes. In the third strategy, a
completely distributed model is applied, where for each process pi that executes the
VNS algorithm, there is a corresponding process qi, that manages the iterations.

The distributed parallel strategies implemented were called ParInd for the dis-
tributed algorithm that executes static load balance, ParDist for the algorithm that
uses dynamic load balance in a completely distributed model and ParMW for the
algorithm that uses dynamic load balance in a master-worker model.

4 Computational Results

The parallel strategies described previously were implemented on five algorithms.
In the first one, called GDif, each processor executes a different version of GRASP.
In the second one, GEqual, every processor executes the same algorithm GRASP,
that presented the best results in the sequential version employing AddRandom for
construction of an initial solution and Hybrid for local search. In the same way,
in VDif each processor executes a different version of VNS and in VEqual, each
processor executes the same VNS employing Drop for generation of an initial solution
and Hybrid for local search. Finally in GVDif, each processor executes a different
algorithm based on GRASP+VNS.

These algorithms were executed on an IBM SP/2 using MPI for parallelism with
4 and 8 processors dedicated exclusively to the application.

We generated five instances randomly varying the number of markets from 100
to 500, the number of items from 100 to 500, the cost of travel from 10 to 500, the
number of items per market from 5 to 100 and the cost of each item from 10 to 500.
Each program was executed 3 times for each instance and in all cases 2000 iterations
were executed.

In tables 2 and 3, the average results of GVDif, that presented the best average
results when compared with the other algorithms (GDif, GEqual, VDif, VEqual)
considering all proposed strategies for parallel implementations, are shown. In these
tables, the average cost (“Cost”), average time in seconds (“Time”), speedup (“SU”)
and efficiency (“E”) for four (“4P‘”) and eight (“8P”) processors are presented. The
cost and time of the sequential algorithms are obtained using only one processor.
Remark that speedup measures the acceleration observed for the parallel algorithm
when compared with its sequential version and efficiency measures the average fraction
of the time along which each process is effectively used. Thus, SU(P)=T(seq)/T(P),
such that T(seq) is the time required for the sequential algorithm and T(P) the time
required for the parallel algorithm run on P processors, and E(P)= SU(P)/P.

In GVDif, each process executes a hybrid sequential algorithm that consists of
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a GRASP procedure that applies a local search method based on VNS. Thus, the
algorithms employed for construction of initial solutions of GVDif are AddGeni and
AddRandom, when 4 processors are used. In case of 8 processors, DropGeni and
DropRandom were also executed. The local search phases employ Hybrid and DropAdd
algorithms adapted in a structure with several neighborhoods as previously described.
The parallel algorithms are compared with the sequential version that consists of a
GRASP+VNS algorithm whose procedures of construction and local search vary ac-
cording to the iteration, i.e., each strategy (AddGeni - VNS Hybrid, AddRandom -
VNS Hybrid, AddRandom - VNS DropAdd, AddGeni - VNS DropAdd,DropGeni -
VNS Hybrid, DropRandom - VNS Hybrid) is executed for an equal number of itera-
tions. The algorithm GVDif reduced the execution times significantly improving also
the quality of solutions in most cases when compared with the previous algorithms.

Algorithm Cost(4P) Time(4P) Cost(8P) Time(8P)
Sequential 17525.106 18790.667 17525.106 18790.667
ParInd 17612.509 5984.350 17561.133 2355.900
ParDist 17586.838 6247.898 17549.562 2393.208
ParMW 17609.722 7933.148 17563.103 2804.362

Table 2: Average Cost and Time of Algorithm GVDif

Algorithm SU(4P) E(4P) SU(8P) E(8P)
ParInd 3.14 0.78 7.98 0.99
ParDist 3.01 0.75 7.85 0.98
ParMW 2.37 0.59 6.70 0.84

Table 3: Speedup (SU(.)) and Efficiency (E(.))of Algorithm GVDif

In all programs executed, the increasing of the number of processors improves the
qualities of solutions, because more processors explore the search space. The increas-
ing of the number of processors improves also the efficiency in all cases. In ParInd
this happens because the number of iterations received by each process is inversely
proportional to the number of processors employed. As each process may execute dif-
ferent procedures of local search and construction that may present different execution
times, the delay impact is more evident when the number of iterations is increased.
Thus when more processors are used, the delay caused by a process running a slower
algorithm is smaller than when it executes more iterations, that happens when less
processors are employed.

In ParDist and ParMW the increasing of efficiency can be explained by the fact
that when the number of processors employed increases, the necessity of load balance
reduces and less messages are exchanged, increasing the efficiency.

Although the algorithms proposed presented good results, their versions that use
dynamic load balance did not present the best results considering execution times.
This happens because the tests were executed on a computer dedicated exclusively
to the application with identical processors and the different times required by the
several algorithms of construction and local search did not compensate for the time
wasted with load balance in this computational system.
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5 Concluding Remarks

In this paper, several algorithms based on concepts of GRASP and VNS for the TPP
were proposed. One of the main goals of this work was to show that algorithms
GRASP and VNS can give results as good as the best versions of Tabu Search al-
gorithms existing in literature. We employed several algorithms of construction and
local search in our algorithms GRASP and VNS, including some that were employed
for the Tabu Search algorithm proposed by Voss [16] [17].

The high potential of the algorithms GRASP, VNS and GRASP+VNS could be
testified through the good computational results obtained by the sequential algo-
rithms proposed. This good performance encouraged the development of several
strategies of parallelism for these metaheuristics, aiming the analysis of the parallel
models more appropriate for GRASP and VNS algorithms.

Thus, we proposed several strategies for parallel implementations of the Greedy
Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood Search
(VNS) applied to the TPP, based on independent, master-worker and completely dis-
tributed models, using static and dynamic load balance. Although the algorithms
proposed presented good results, their versions that use dynamic load balance did
not present the best results because the tests were executed on a computer dedicated
exclusively to our application with identical processors. We could observe that when
the number of processors increased the necessity of load balance reduced and con-
sequently less messages were exchanged and the efficiency increased. The increasing
of the number of processors caused the improvement of the qualities of solutions in
all programs too. Finally we observed that the algorithm that employed concepts of
GRASP and VNS, GVDif, presented the best results concerning the execution times
and the efficiency in the parallel models, improving also the quality of solutions in
most cases. This fact indicates that the use of this hybrid approach may be very
advantageous.

Experimental tests will continue on a heterogeneous system in order to further
evaluate the dynamic load balance strategy.
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