
A dynamic resource constrained
task scheduling problem†

André Renato Villela da Silva

Luis Satoru Ochi*
Instituto de Computação - Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil

Abstract

The purpose of this paper is to provide a new model for the Resource-Constrained
Task Scheduling Problem (RCTSP) defined in this work as the Dynamic Resource-
Constrained Task Scheduling Problem (DRCTSP). In the proposed model, we
gather resources (profits) accordingly with the moment in which each task is
activated during the planning process. To solve the DRCTSP, we proposed a
mathematical formulation; enhancement techniques, and evolutionary heuristics.

Keywords: metaheuristic, evolutionary algorithm, task scheduling problem

1. Introduction

The task scheduling problem, in its former case, is composed by a set of n tasks T (|T| = n) and a
set of m processors P (|P| = m). The objective is to assign the tasks ti on the processors, such that
the total processing time (makespan) is minimized. The problem becomes more difficult to solve
when the tasks have precedence among then, what generally occurs.

Another constraint commonly used is related to an entity called “resource”. To activate a task ti,
we need to pay a cost ci (retrieved from an amount of available resources). Hence, a new set of
objective functions can be elaborated mixing the makespan with the amount of resources. There is a
lot of modeling for the RCPSP that uses both makespan and the resources. A deeply reading can be
made at [1][2][3][4][5][6][8]. In the proposed model, there is profit li, related to the task ti that is
added to the available resources after the task ti activation (this profit will be available for each unit
time from this moment until the end of the planning process). Due to its high complexity, this problem
(and its derivations) belongs to the NP-Complete class of combinatorial optimization problems. In
this way, the application of exact methods becomes limited, justifying the use of heuristic techniques.
In this work, we propose a dynamic version of the RCTSP here defined as Dynamic Resource-
Constrained Task Scheduling Problem (DRCTSP). For this problem are proposed: (i) enhancement
techniques; (ii) a mathematical formulation; and (iii) heuristics using concepts of evolutionary algorithm. In the Section
2, we show more topics about the proposed model, the mathematical formulation and a small
constructive sample. The Section 3 is dedicated to the heuristics and the enhancement techniques.
The Section 4 shows computational results and Section 5, concluding remarks.

2. The Dynamic Resource-Constrained Task Scheduling Problem

The motivation to propose this dynamic version of the RCTSP (DRCTSP) comes from a

computer game (Civilization III, from FIRAXIS Games Inc.), where the player must research

* Corresponding author E-mails: {avillela, satoru}@ic.uff.br

some technologies (activate tasks) to help your civilization development. A DRCTSP consists of a
DAG (directed acyclic graph) G = (V, A), where V is the set of vertexes (tasks) and A is the set of
arcs (precedence among the tasks). Associated to each task ti there is a cost ci and a profit li
(positive integer values). There is too a planning process (time interval composed by H time units).

The objective of the DRCTSP is maximizing the available resources at the end of the planning
process. This model has potential application on manufacture expansion projects, where the tasks
are expansion steps that can be made separately. Some concepts of the DRCTSP model:
Activation: it is the entry of a task ti in the current partial solution. To do this, we need to pay a cost
ci. After the activation, a profit li is available to us at each time unit. Available task: a task ti is
available, if all its predecessor tasks are activated. A task without precedence is available too.
Planning Process: it is a set of time units, [1..H], when the tasks can be activated. Cost (ci): it is
the amount of resources necessary to activate a task ti. Profit (li): it is the amount of resources given
by a task ti, for each time unit, from its activation until the final time unit H. Total profit (Si): it is the
profits sum of a task ti. Available Resources (Qt): it is the amount of resources that can be used to
activate tasks, at time unit t. Time Profit (Lt): it is the sum of all profits that will be returned at time
unit t.

2.1 Mathematical Formulation

We describe the DRCTSP as an integer programming problem. The xit binary variable sets if a
task ti is activated (= 1) at time unit t or not (= 0). The Qt integer variable defines the amount of
available resources at time t. The Lt Integer variable defines the profit at time t. Q0 is a problem input
data and L0 = 0. The P(i) represents the set of predecessor tasks of task ti. Following, in the Figure
1 is the proposed formulation. The line 2.1 describes the objective function (maximize QH + LH), where H is the
last time unit. The 2.2 constraints ensure that a task ti only will be activated at time 1, if it doesn’t have any precedence
(|P(i)| = 0). The 2.3 constraints ensure that a task ti only will be activated at time t, if all its predecessor tasks are activated,
at least t-1 time. The 2.4 constraints guarantee that the sum of task costs activated at time t will be less or equal than the
available resources in this time. In the 2.5 constraints are defined how the available resources are changing along the time.
Similarly, in the 2.6 constraints are defined the time profit increments. In the 2.7 constraints is ensured that a task ti will be
activated once. Finally, the last two constraints define the variables of the problem.

2.2 A simple constructive sample

To demonstrate these concepts, we present now a small sample of solution construction. Here Q0 =
2 (input data) and L0 = 0. At every task, there are two numbers above then: the first one is its cost
and second one is its profit for each time unit. Activated tasks are in white, available in gray and
unavailable in black. In the Fig 2 (a), at time unit t = 1, there are two available tasks (1 and 2). Let’s
activate task 1. We need to calculate the Q1 = 1 and L1 = 2, and the available tasks (now, 2 and 3).
Let’s activate both. In the Fig 2 (b), at time unit t = 2, we calculate Q2 = 0 and L2 = 7 and update
the task 4 state. Finally, at Fig 2 (c) we activate task 4 and calculate Q3 = 5 and L3 = 9. Then, the
final solution value is given by Q3 + L3 = 14.

3 – Evolutionary Heuristics

To solve the DRCTSP, was initially proposed one randomized constructive heuristic ADDR. At
each time unit t, it makes a list of available tasks and orders it accordingly the {ci/li} of the tasks.
Then a subset of these tasks (the p% best tasks using a α parameter as used in GRASP algorithms
[9] is selected). Among these tasks, one is randomly selected. If its cost is less or equal the available

resources, this tasks is activated and Qt and Lt updated. New random selections are made until there
aren’t any available tasks or available resources in this time t. The tasks states are updated, Qt+1 and
Lt+1 are calculated and we pass to the next time until the final time H.

Figure1: The mathematical formulation of the DRCTSP

Figure 2: A sample of constructive algorithm

3.1 Enhancement Techniques (ET)

This works also presents a set of enhancement techniques to try to improve the solution quality
generated by the propose algorithms. Two of these techniques try to reduce the feasible solution
space, creating constraints to the tasks activation. The third ET does a pre-processing based on an
optimal scheduling foresight. And the last one does a pre-processing to try to reduce the
computational time. They are in following.

ET1: Cutting Time (CT). Its idea is simple: from some planning time on, a task only will be activated if its Total Profit (Si) > ci. In other
words, only if a task generates more resources than its cost we can activate it. It is proposed not to spend resources with a task “poorly
profitable”. The CT must be in [1, H] of the planning process. If CT = 1, we will ever use it, if CT = H we will never use it.

ET2: Relaxation Margin (RM). It is proposed to correct an abuse made by CT. A non-profitable task t i can be
activated due a possible future profitable successor task of it. To do this, we will multiply the Si by a RM factor
(near 1.0 to up). Then, we give a chance to task t i to be activated even its “local non-profitable state”. However,
we cannot ensure that this successor task will be activated, because it will depend on others situations.

ET3: Previous Weighting (PW). In this case, we will not use the {ci/li} to order the available tasks. We will
use the {ci/EPi.} where EP i is the Expected Profit of task ti. It is calculated (once) based on the early time that a
task can be activated (looking only to the graph topology). Once discovered this early time, we multiply it by the
profit li to obtain the EP i.

ET4: Arc Removing (AR). It is a reduction rule and doesn’t noise the solution quality, but reduces the
processing time, by removing some redundant arcs of the input graph. An arc (r,s) can be removed if, after this,
we can find a path K from r to s in the resulting graph. So the arc (r,s) is said an explicit precedence of an implicit
precedence (the path K), and can be removed. Some preliminary tests prove that in the most cases it reduces the
processing time, mainly in instances with a very large number of arcs.

3.2 Local Search

Local search (LS) is an improvement procedure that tries to modify an initial solution by changing small segments of it,
called neighborhood. Two local search algorithms are proposed: the first one (LS1) analyzes on each task ti by time. It
does the same calculation made by CT. If a task ti has ci > Si it is removed from the current solution. The analysis begins
with the tasks activated lately, coming to the task activated early. The second LS (LS2) is a generalization of the LS1 and
works on a set of all successors of a task ti (Fi) by time. If the total cost of the set Fi is more than the total profit generated
by Fi, the whole set Fi is removed from the current solution.

3.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) and the Genetic Algorithms (GA), its most popular representative,
are heuristics that works simultaneously with a population of solutions, trying to combine them to
generate better solutions. Basically we need to generate a population of feasible solutions called initial
population. Then, a population subset is chosen to combine and generate a new population. From
these two populations, a subset of solutions is chosen to form the new generation of EA. Then, new
solutions are chosen to combine and generate a new population and so on. The EA stops when a
number of generations are achieved. Readings on EA can be made at [2][5][7][8][10][11]. The EAs
have been used in several areas to solve problems considered intractable (NP-Complete and NP-
Hard) although its basic versions do not demonstrate too much efficiency in the high complexity
problems [10][11]. In order to improve the GA and EA performance researchers have proposed
hybrid versions [5][8][10][11].

Two EA (EA1 and EA2) are proposed to solve the DRCTSP. The EA1 is a basic version and
the EA2 is a hybrid version including all the enhancement techniques (ET) and the local searches proposed.
The Table 1 shows the differences between them. The column Size indicates the size of the
populations. Gens is the maximum number of generations. Init. LS shows the Local Searches used
after the initial population generation. Pop. LS is the local searches used after the generation of a new
population. The last column indicates the enhancement techniques used.

EA Size Gens Init. LS Pop. LS ETs
EA1 30 50 - - AR
EA2 30 50 LS1, LS2 LS1 AR, CT, RM, PP

Table 1: EAs structures

Both EAs generates the initial population using the ADDR heuristic. The α parameter is very important to obtain good
solutions. We defined a α range of values ([0,05 ; 1,0], with 0,05 increments) within one value is chosen. For each value
of α, the ADDR runs 20 times. The chosen α is the value that generates the best solution from them all. Similarly, the
CT value ([0,2 ; 1,0] with 0,1 increments), the RM value ([1,0 ; 1,4] with 0,1 increments) and the PW value (“use” or
“don’t use”) are chosen. To choose the solutions that will combine, the population is partitioned in three
parts. The “PA” class is composed by the 20% best solutions. The “PC” class by the 20% worst
solutions. The “PB” class by the others solutions. Then to select two parents, a solution from PA is
chosen randomly and combined with a randomly chosen solution from PB. Thirty new solutions
(offsprings) are generated for each iteration. From these 60 solutions (30+30) only the 30 best

different solutions are chosen to be in the next generation. To combine the parent solutions a heuristic
is proposed too. It begins with the tasks without precedence. Let’s call the parent solutions S1 and
S2. A task ti is activated in S1 at time 2 and in S2 at time 3. In the new solution ti will be activated at
the earliest time, in this case time 2. If a task can not be activated at the earliest time (because one or
more constraint violations), the latest time will be chosen. If even thus the task cannot be activated,
then it will not be in the new solution. The algorithm proceeds with the new available tasks (from S1
and S2) until all tasks were analyzed.

4. Computational Results

All tests were done in a 3.0 GHz Pentium 4 HT, with 256 MB and C code over Windows XP. As
the DRCTSP is a new modeling, there aren’t any benchmark instances to use. Then, two classes of
instances were generated to evaluate the proposed enhancement techniques and the evolutionary
heuristics. The A class is formed by a 10% of tasks without precedence and the other part with from
1 to 5 predecessors chosen randomly. In the B class, the first task hasn’t got any precedence. From
the second one, there is a 20 % chance of having precedence with each previous task. In both
classes, the cost ci is chosen from 1 to 50 and the profit Li from 1 to 10, randomly. The time interval
(planning process) is the square root of the number of tasks, if it is less or equal 1000. If the task
number is more than 1000, the interval is the cube root. The first test was done with very small
instances (50 to 150 tasks). It was possible to find the optimal solution with these instances. Then we
created 50 instances for each size, found the optimal solution using the mathematical formulation
proposed and the GLPK software and ran the EAs, setting the associated optimal value as target
value (stop criteria for EAs). The Table 2 shows how many times each EA found the optimal value.
And Table 3 shows the “average distance” to the optimal value, when its value was not reached.
Moreover, in some instances with size of 150 tasks, to reach the optimal value with an exact
algorithm spends 100 times more processing time than an EA.

 A - Instances B – Instances A - Instances B – Instances
Size EA1 EA2 EA1 EA2 Size EA1 EA2 EA1 EA2

50 5 48 0 43 50 51,0% 14,9% 45,8% 8,1%
100 4 20 0 26 100 53,0% 6,8% 51,6% 5,6%
150 0 8 2 28 150 54,7% 9,6% 47,5% 6,7%

 Table 2: Number of optimal solution found in 50 runs Table 3: Average distance to optimal value

In the second test done, the EAs ran three times for each instance, initially with the original stop
criteria (number of generations), and the average value is calculated. The Table 4 shows how much
EA2 outperforms EA1. An example: a value of 100% indicates that EA2 generates a solution twice
better than EA1. The instances were partitioned in class (small: <= 500 tasks - 5 instances; medium:
> 500 and <= 1000 tasks - 5 instances; large >1000 tasks – 10 instances) in both types A and B.
The small difference showed in the medium instances is due the large number of activated tasks in the
solutions. It allows the ADDR without ETs to generate solutions with good quality too, because what
only matters is WHEN the tasks will be activated, not WHAT tasks will be activated. The Table 5
shows a similar test, but now, the EAs have a time limit to run. When time is up, we verify the quality
of the solution found. Again, the value in the table cells indicates how better EA2 is compared to
EA1.

 A - Instances B - Instances A - Instances B – Instances
Small 95,6% 138,9% Small 101,0% 278,3%
Medium 13,7% 14,5% Medium 16,6% 8,9%

Large 145,8% 112,2% Large 149,1% 120,3%
 Table 4: Average outperform from EA2 to EA1 Table 5: Average outperform from EA2 to EA1
 without time limit with time limit

 EA1: A – Instances EA2: A – Instances EA1: A – Instances EA2: A – Instances
Small 0,0% 100,0% 100,0% 100,0%

Medium 0,0% 89,0% 55,6% 100,0%
Large 0,0% 100,0% 73,3% 100,0%

Table 6: Percentage of reached target values

In the last test (Table 6), a target value was defined for each instance used as stop criteria for the
EA1 and EA2. This target value is the EA1 result (average of the three runs) obtained in the first test.
The cell values indicate the percentage of times that the target was reached. The very bad results
obtained in table 6 by EA1 with A-instances (compared to the B-instances) is due the fact that A-
instances have less constraints than B, once A-instances have less precedence among the tasks than
B). Thus, the space solution of A-instances is bigger than B, what does A-instances more difficult to
get an optimal solution.

5. Concluding Remarks

This paper presented a new model of Resource-Constrained Task Scheduling Problem (RCTSP)

called DRCTSP. To solve this problem are presented: a mathematical formulation; enhancement
techniques-ET and evolutionary heuristics. Initially the tables 2 and 3 show that EA2 using all
enhancement techniques (ET) and the two local searches proposed significantly improve the average
performance of the standard version of EA (EA1). Additionally, we did a set of computational tests
with large scale instances, where the objective was to evaluate the behavior of the hybrid version
(EA2) including the ETs and LSs procedures. The average results of the Tables 4, 5 and 6 shows
that EA2 also clearly outperforms the EA1 in the large instances.

6. References

[1] Remy, J. Resource constrained scheduling on multiple machines. Information Proc. Letters, v. 91, p. 177–182, 2004.
[2] Boeres, C.; Rios, E.; Ochi, L. S. Hybrid Evolutionary Static Scheduling for Heterogeneous Systems. Proc. of the IEEE Conf. on Evolutionary Computation
(CEC2005), Book 3, pp. 1929-1937, Edinburgh, 2005.
[3] Kalinowski, T.; Kort, I.; Trystam, D. List scheduling of general task graphs under LogP. Parallel Computing, 26, p. 1109–1128, 2000.
[4] Bouleimen, K.; Lecoco, H. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode
version. European Journal of Operational Research, v. 149, p. 268–281, 2003.
[5] Gonçalves, J. F.; Mendes, J. J. M.; Resende, M. G. C. A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal
of Operational Research (submitted), 2005.
[6] Brucker, P. et al. Resource-constrained project scheduling: Notation, classification, models, and methods. EJOR, v. 12, p. 3–41, 1999.
[7] Holland, J. H. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: [s.n.], 1975.
[8] Gonçalves, J.; Mendes, J.; Resende, M.G.C. A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research,
v. 167, p. 77–95, 2005.
[9] Resende, M.G.C.; Ribeiro, C.C. Greedy randomized adaptive search procedures (GRASP). In: Handbook of Metaheuristics [edited by F. Glover and G.
Kochenberger], Kluwer Academic Publishers, p. 219-249, 2002.
[10] Santos, H. G.; Ochi, L. S.; Marinho, E. H.; Drummond, L. Combining an Evolutionary Algorithm with Data Mining to
solve a Vehicle Routing Problem. To appear in Neurocomputing Journal - ELSEVIER, 2006.
[11] Trindade, A. R.; Ochi, L. S. Um algoritmo evolutivo híbrido para a formação de células de manufatura em sistemas de
produção. To appear in Pesquisa Operacional, SOBRAPO, 2006.

† Partly supported by FAPERJ: E-26/ 150.575/2004

