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Abstract

The purpose of this paper isto provide a new model for the Resource-Constrained
Task Scheduling Problem (RCTSP) defined in this work as the Dynamic Resource-
Constrained Task Scheduling Problem (DRCTSP). In the proposed model, we
gather resources (profits) accordingly with the moment in which each task is
activated during the planning process. To solve the DRCTSP, we proposed a
mathematical formulation; enhancement techniques, ad evol utionary heuristics.

Keywords: metaheuristic, evolutionary algorithm, task scheduling problem

1. Introduction

The task scheduling problem, in itsformer case, iscomposed by aset of ntasks T ([T| =n) and a
set of m processors P (|P| = m). The objective is to assign the tasks t on the processors, such that
the total processing time (makespan) is minimized. The problem becomes more difficult to solve
when the tasks have precedence among then, what generaly occurs.

Another congtraint commonly used is related to an entity called “resource’. To activate a task t;,
we need to pay a cost G (retrieved from an amount of avalable resources). Hence, a new set of
objective functions can be eaborated mixing the makespan with the amount of resources. Thereisa
lot of modeling for the RCPSP that uses both makespan and the resources. A deeply reading can be
made at [1][2][3][4][5][6][8]. In the proposed modd, there is profit |, related to the task t thet is
added to the available resources after the task t activation (this profit will be avalable for each unit
time from this moment until the end of the planning process). Due to its high complexity, this problem
(and its derivations) belongs to the NP-Complete class of combinatorid optimization problems. In
this way, the gpplication of exact methods becomes limited, justifying the use of heurigtic techniques.
In this work, we propose a dynamic verson of the RCTSP here defined as Dynamic Resource-
Congtrained Task Scheduling Problem (DRCTSP). For this problem are proposed: (i) enhencamat
tedniques (i) amethameticd famulaion and (jii) heundics usng conogais o evdutioraty dganittm. In the Section
2, we show more topics about the proposed mode, the mathematical formulation and a smdl
congructive sample. The Section 3 is dedicated to the heuristics and the enhancement techniques.
The Section 4 shows computationa results and Section 5, concluding remarks.

2. The Dynamic Resour ce-Constrained Task Scheduling Problem

The motivation to propose this dynamic verson of the RCTSP (DRCTSP) comes from a
computer game Civilization 111, from HRAXIS Games Inc.), where the player must research
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some technologies (activate tasks) to help your civilization development. A DRCTSP consdts of a
DAG (directed acyclic graph) G = (V, A), where V is the set of vertexes (tasks) and A is the set of
arcs (precedence among the tasks). Associated to each task { there is a cost G and a profit |
(positive integer vaues). There istoo a planning process (time interva composed by H time units).

The objective of the DRCTSP is maximizing the available resources a the end of the planning
process. This model has potential gpplication on manufacture expanson projects, where the tasks
are expanson steps that can be made separately. Some concepts of the DRCTSP mode:
Activation: it is the entry of atask t; in the current partia solution. To do this, we need to pay a cost
.. After the activation, a profit | is avalable to us a each time unit. Available task: a task f is
available, if dl its predecessor tasks are activated. A task without precedence is available too.
Planning Process: it isa st of time units, [1..H], when the tasks can be activated. Cost (c): itis
the amount of resources necessary to activate a task t;. Profit (I;): it isthe amount of resources given
by atask t, for each time unit, from its activation until the find time unit H. Total profit (S)): itisthe
profits sum of atask . Available Resources (Qy): it isthe amount of resources that can be used to
activate tasks, a time unit t. Time Profit (Ly): it isthe sum of al profits that will be returned a time
unit t.

2.1 Mathematical Formulation

We describe the DRCTSP as an integer programming problem. The x; binary varidble sstsif a
task t is activated (= 1) a time unit t or not (= 0). The Q integer variable defines the amount of
available resources at time t. The L; Integer variable defines the profit a timet. Qp isaproblem input
data and L, = 0. The P(i) represents the set of predecessor tasks of task t;. Following, in the Figure
1 is the proposed formulation. Theline 2.1 desribes the dgedive fundion (maximize Q, + L), whareH isthe
lag ime unit. The 22 condranis esure thet atask t only will be edtiveted & time 1, if it does't have any preosdence
(R0 =0). The23 congrantsemaure thet atask t oy will beadiveted & timet, if dl its predecessor tasksare adtivated,
a leegt t1 time The24 cordraints guarantee thet the um of task cogts adtivated & timet will belessor equd then the
avaladderesourassinthistime Inthe 25 condranisare ddined how the avaldde resourcesarednengng dong thetime
Smilaly, in the 26 congrantsare ddfined thetime prdfit incremants Inthe 2.7 condrainisisesurad thet attesk t will e
adiveted once Hrdly, thelegt two congrantsddfinethe vaibles of thepradem

2.2 A smple constructive sample

To demongtrate these concepts, we present now a small sample of solution congtruction. Here Qp =
2 (input data) and Lo = 0. At every task, there are two numbers above then: the first one is its cost
and second one is its pofit for each time unit. Activated tasks are in white, available in gray and
unavalablein black. Inthe Fig 2 (8), a time unitt = 1, there are two availabletasks (1 and 2). Let’'s
activate task 1. We need to calculate the Q, = 1 and L, = 2, and the available tasks (now, 2 and 3).
Let’s activate both. In the Fig 2 (b), a time unit t = 2, we caculate Q. = 0 and L, = 7 and update
the task 4 state. Findly, a Fig 2 (c) we activate task 4 and caculate Qs = 5and L = 9. Then, the
find solution valueis givenby Qs+ Lz = 14.

3 —Evolutionary Heuristics

To solve the DRCTSP, was initidly proposed one randomized congtructive heuristic ADDR. At
each time unit t, it makes a list of avallable tasks and orders it accordingly the {ci/l} of the tasks.
Then asubset of these tasks (the p% best tasks using a a parameter as used in GRASP dgorithms
[9] is sdected). Among these tasks, one is randomly selected. If its cost isless or equd the available



resources, thistasksis activated and Q; and L; updated. New random sdections are made until there
aren't any available tasks or available resources in thistime t. The tasks states are updated, Q. and
L+ are caculated and we pass to the next time until the final time H.
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Fgure 2: A sample of congructive dgorithm
3.1 Enhancement Techniques (ET)

This works aso presents a st of enhancement techniques to try to improve the solution qudity
generated by the propose dgorithms. Two of these techniques try to reduce the feasible solution
pace, creating congraints to the tasks activation. The third ET does a pre-processing based on an
optimal scheduling foresight. And the last one does a pre-processng to try to reduce the
computationd time. They are in fallowing.

ET21: Cutting Time (CT). Itsideaiissmple from some planning time on, atask only will beactivated if itsTotal Profit (S) >¢. Inother
words, only if atask generates more resources then its cost we can activete it. It is proposad not to spend resourceswith atask “poorly
profitable’. TheCT mugt bein[1, H] of theplanningproocess If CT =1, wewiill ever useit, if CT =H wewill never useit.

ET2: Relaxation Margin (RM). It is proposed to correct an abuse made by CT. A non-profitable task t; can be
activated due a possible future profitable successor task of it. To do this, we will multiply the § by aRM factor
(near 1.0 to up). Then, we give a chance to task t; to be activated even its “local non-profitable state”. However,
we cannot ensure that this successor task will be activated, because it will depend on others situations.

ET3: Previous Weighting (PW). In this case, we will not use the {c/l;} to order the available tasks. We will
use the {c/EP.} where EP, is the Expected Profit of task t;. It is calculated (once) based on the early time that a

task can be activated (looking only to the graph topology). Once discovered this early time, we multiply it by the
profit |; to obtain the EP,.



ET4: Arc Removing (AR). It is a reduction rule and doesn’t noise the solution quality, but reduces the
processing time, by removing some redundant arcs of the input graph. An arc (r,s) can be removed if, after this,
we can find apath K fromr to sin the resulting graph. So the arc (r,s) is said an explicit precedence of animplicit
precedence (the path K), and can be removed. Some preliminary tests prove that in the most cases it reduces the
processing time, mainly in instances with avery large number of arcs.

3.2 Local Search

Locd ssrdch (LS isanimprovamant prooedurethat triesto modify anlinitid saluion by dnenging arell sgmantsd i,
cdled neghborhood. Two locd search dgarnithims are praposact thefirg one (LSL) andlyzes on eech task 1 by time: 1t
dossthe same cdadaion mede by CT. If atask t; hesG > S itisramoved from thecurat sdlution. Theardyssbegins
with thetasks adtiveted lately, coming to thetesk adtivated eally. Thessoond LS(LS?) isagenerdization of the LS and
worksonasa of dl successrsof atask t; (F) by ime If thetatd oot of thesst F ismorethenthetald prafit generated
by F, thewhde s F; isramoved from thecurat solution

3.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) and the Genetic Algorithms (GA), its most popular representative,
are heurigtics that works smultaneoudy with a population of solutions, trying to combine them to
generate better solutions. Basicaly we need to generate a population of feasible solutions called initia
population. Then, a population subset is chosen to combine and generate a new population. From
these two populations, a subset of solutions is chosen to form the new generation of EA. Then, new
solutions are chosen to combine and generate a new population and so on. The EA stops when a
number of generations are achieved. Readings on EA can be made at [2][5][7][8][10][11]. The EAs
have been usad in severa areas to solve problems considered intractable (NP-Complete and NP-
Hard) athough its basic versions do not demongtrate too much efficiency in the high complexity
problems [10][11]. In order to improve the GA and EA performance researchers have proposed
hybrid versions [5][8][10][11].

Two EA (EA1 and EA2) are proposed to solve the DRCTSP. The EAl is abasic verson and
the EA2 s a hybrid verson induding dl the enhencamant tedhniques (ET) and the locd searches proposed.
The Table 1 shows the differences between them. The column Sze indicates the Sze of the
populations. Gens is the maximum number of generations. Init. LS shows the Local Searches used
after the initid population generation. Pop. LSistheloca searches used after the generation of anew
population. The last column indicates the enhancement techniques used.

EA Size Gens [ Init.LS Pop.LS | ETs
EA1 30 50 - - AR
EA2 30 50 LS, LS2 LS1 AR, CT, RM, PP

Table 1: EAs structures

Bath EAs gaadestheinitid populaion usng the ADDR haunidic. The a peramder isvary impartant to otain good
slutions Weddined aa ranged vaues([0,05 ; 1,0], with Q05 inoramants) within onevaueisdhosmn For echvdue
d a, the ADDR runs 20 times Thedosn a  isthe vdue thet genarates the best sdutionframtramdl. Smilaty, the
CT vdue (0,2 ; 1,0] with 0,1 incemas), the RM veue (1,0 ; 1,4] with O, L incramants adthePW vdue (‘usg’ or
“don't uss’) are dhosn. To choose the solutions that will combine, the population is partitioned in three
parts. The “PA” class is composed by the 20% best solutions. The “PC” class by the 20% worst
solutions. The “PB” class by the others solutions. Then to select two parents, a solution from PA is
chosen randomly and combined with a randomly chosen solution fom PB. Thirty new solutions
(offsprings) are generated for each iteration. From these 60 solutions (30+30) only the 30 best



different solutions are chosen to be in the next generaion. To combine the parent solutions a heuristic
is proposed too. It begins with the tasks without precedence. Let’s cal the parent solutions S1 and
S2. A task tj isactivated in Sl at time 2 and in 2 & time 3. In the new solution t; will be ectivated a
the earliest time, in this case time 2. If atask can not be activated at the earliest time (because one or
more congraint violations), the latest time will be chosen. If even thus the task cannot be activated,
then it will not be in the new solution. The agorithm proceeds with the new available tasks (from S1
and ) until dl tasks were andyzed.

4. Computational Results

All tests were done in a 3.0 GHz Pentium 4 HT, with 256 MB and C code over Windows XP. As
the DRCTSP is a new moddling, there aren’t any benchmark instances to use. Then, two classes of
indances were generated to evaluate the proposed ethencemat tedriques and the evolutionary
heurigtics. The A classisformed by a 10% of tasks without precedence and the other part with from
1 to 5 predecessors chosen randomly. In the B class, the first task hasn't got any precedence. From
the second one, there is a 20 % chance of having precedence with each previous task. In both

classes, the cost ¢ ischosen from 1 to 50 and the profit L; from 1 to 10, randomly. Thetimeinterva
(planning process) is the square root of the number of tasks, if it isless or equal 1000. If the task
number is more than 1000, the intervd is the cube root. The fird test was done with very smal

ingtances (50 to 150 tasks). It was possible to find the optimal solution with these instances. Then we
created 50 ingtances for each sze, found the optima solution using the mathematica formulation

proposed and the GLPK software and ran the EAS, setting the associated optimal value as target
vaue (stop criteria for EAS). The Table 2 shows how many times each EA found the optimd vaue.
And Table 3 shows the “average distance” to the optima vaue, when its value was not reached.
Moreover, in some ingances with size of 150 tasks, to reach the optima vaue with an exact

agorithm spends 100 times more processing time than an EA.

A - Instances | B —Instances A - Instances B — Instances

Size | EA1 [ EA2 | EAl | EA2 Size |EAl EA2 EAL EA2
50 5 48 0 43 50| 51,0%| 14,9%| 458%| 8,1%
100 4 20 0 26 100 53,0%(| 6,8%| 51,6%| 5,6%
150 0 8 2 28 150 54,7%| 9,6%| 47,5%| 6,7%

Table 2: Number of optimal solution found in 50 runs Table 3: Average distance to optimal value

In the second test done, the EAS ran three times for each ingtance, initidly with the origina stop
criteria (number of generations), and the average vaue is calculated. The Table 4 shows how much
EAZ2 outperforms EAL. An example: a vaue of 100% indicates that EA2 generates a solution twice
better than EA1. The instances were partitioned in class (smdl: <= 500 tasks - 5 instances; medium:
> 500 and <= 1000 tasks - 5 instances; large >1000 tasks — 10 instances) in both types A and B.
The smdl difference showed in the medium instances is due the large number of activated tasksin the
solutions. It dlows the ADDR without ETs to generate solutions with good qudity too, because what
only matters is WHEN the tasks will be activated, not WHAT tasks will be activated. The Table 5
shows asmilar test, but now, the EAs have atime limit to run. When time is up, we verify the qudity
of the solution found. Again, the vaue in the table cells indicates how better EA2 is compared to
EAL

A - Instances

B - Instances

Small

95,6%

138,9%

Medium

13,7%

14,5%

A - Instances

B — Instances

Small

101,0%

278,3%

Medium

16,6%

8,9%




Large

145,8%

112,2%

Table 4: Average outperform from EA2 to EA1

without time limit

Lage

149,1%

120,3%

Table 5: Average outperform from EA2 to EA1
with time limit

EAL1: A —Instances EA2: A —Instances | EAL: A —Instances EA2: A —Instances
Small 0,0% 100,0% 100,0% 100,0%
Medium 0,0% 89,0% 55,6% 100,0%
Lage 0,0% 100,0% 73,3% 100,0%

Table 6: Percentage of reached target values

Inthe last test (Table 6), atarget value was defined for each instance used as stop criteria for the
EA1 and EA2. Thistarget valueisthe EA1 result (average of the three runs) obtained in the firgt test.
The cdl vaues indicate the percentage of times that the target was reached. The very bad results
obtained in table 6 by EA1 with A-instances (compared to the B-instances) is due the fact that A-
instances have less congraints than B, once A-instances have less precedence among the tasks than
B). Thus, the space solution of A-instances is bigger than B, what does A-instances more difficult to
get an optima solution.

5. Concluding Remarks

This paper presented a new mode of Resource-Congtrained Task Scheduling Problem (RCTSP)
cdled DRCTSP. To solve this problem are presented: a mathematical formulation; enhancement
techniques-ET and evolutionary heuridics. Initidly the tables 2 and 3 show that EA2 usng Al
enhancement techniques (ET) and the two loca searches proposed significantly improve the average
performance of the andard version of EA (EA1). Additiondly, we did a set of computationa tests
with large scde ingtances, where the objective was to evauate the behavior of the hybrid verson
(EA2) including the ETs and LSs procedures. The average results of the Tables 4, 5 and 6 shows
that EA2 ds0 clearly outperforms the EA1 in the large instances.
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