A Hybrid Algorithm for the Heterogenous Fleet Vehicle Routing Problem

Anand Subramanian ${ }^{\text {a,b }}$, Puca Huachi Vaz Penna ${ }^{\text {b }}$, Eduardo Uchoa ${ }^{\text {c }}$, Luiz Satoru Ochi ${ }^{\text {b }}$
${ }^{a}$ Universidade Federal da Paraíba, Departamento de Engenharia de Produção, Centro de Tecnologia, Bloco G, Cidade Universitária, João Pessoa-PB, 58051-970, Brazil
${ }^{b}$ Universidade Federal Fluminense - Instituto de Computação, Rua Passo da Pátria 156, Bloco E-3o andar, São Domingos, Niterói-RJ, 24210-240, Brazil
${ }^{c}$ Universidade Federal Fluminense - Departamento de Engenharia de Produção, Rua
Passo da Pátria 156, Bloco E-4ªndar, São Domingos, Niterói-RJ, 24210-240, Brazil

Abstract

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The HFVRP generalizes the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types, with distinct capacities and costs. The objective is to determine the best fleet composition as well as the set of routes that minimize the total costs. The proposed hybrid algorithm is composed by an Iterated Local Search (ILS) based heuristic and a Set Partitioning (SP) formulation. The SP model is solved by means of a Mixed Integer Programming solver that interactively calls the ILS heuristic during its execution. The developed algorithm was tested in benchmark instances with up to 360 customers. The results obtained are quite competitive with those found in the literature and new improved solutions are reported.

Key words: Routing, Heterogeneous Fleet, Matheuristics, Iterated Local Search, Set Partitioning

[^0]
1. Introduction

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP), which can be defined as follows. Let $G=(V, A)$ be a directed graph where $V=\{0,1, \ldots, n\}$ is a set composed by $n+1$ vertices and $A=\{(i, j): i, j \in V, i \neq j\}$ is the set of arcs. The vertex 0 denotes the depot, where the vehicle fleet is located, while the set $V^{\prime}=V \backslash\{0\}$ is composed by the remaining vertices that represents the n customers. Each customer $i \in V^{\prime}$ has a non-negative demand q_{i}. The fleet is composed by m different types of vehicles, with $M=\{1, \ldots, m\}$. For each $u \in M$, there are m_{u} available vehicles, each with a capacity Q_{u}. Every vehicle type is also associated with a fixed cost denoted by f_{u}. Finally, for each $\operatorname{arc}(i, j) \in A$ there are associated costs $c_{i j}^{u}=d_{i j} r_{u}$, where $d_{i j}$ is the distance between the vertices (i, j) and r_{u} is a type-variable travel cost per distance unit, of a vehicle of type u. The objective is to determine the best fleet composition as well as the set of routes that minimize the sum of fixed and travel costs in such a way that: (i) every route starts and ends at the depot and is associated to a vehicle type; (ii) each customer belongs to exactly one route; (iii) the vehicle's capacity is not exceeded. The HFVRP is $\mathcal{N} \mathcal{P}$-hard since it includes the classical VRP as a special case when all vehicles are identical.

The HFVRP is a very important problem, since fleets are likely to be heterogeneous in most practical situations. According to Hoff et al. (2010), even when the acquired fleet is homogeneous, it can become heterogeneous over the time when vehicles with different characteristics are incorporated. Moreover, insurance, maintenance and operating costs may have different values based to the level of depreciation or usage time of the fleet.

We consider the cases where the fleet is limited (Heterogeneous Vehicle Routing Problem - HVRP) as well as the cases where the fleet is unlimited (Fleet Size and Mix - FSM). More specifically, we tackle the following variants:

- HVRPFV, limited fleet, with fixed and variable costs;
- HVRPV, limited fleet, with variable costs but without fixed costs, i.e., $f_{u}=0, \forall u \in M$;
- FMSFV, unlimited fleet, i.e., $m_{u}=+\infty, \forall u \in M$, with fixed and variable costs;
- FSMF, unlimited fleet, with fixed costs but without variable costs, i.e., $r_{u}=1, \forall u \in M ;$
- FMSV, unlimited fleet, with variable costs but without fixed costs.

In this work, we propose a hybrid algorithm, that is composed by an Iterated Local Search (ILS) based heuristic and a Set Partitioning (SP) formulation. The SP model is built using routes generated by ILS and it is solved by means of a Mixed Integer Programming (MIP) solver that interactively calls the ILS heuristic during its execution. This strategy differs from other approaches that also create solutions out of routes such as those of Rochat \& Taillard (1995) and Tarantilis \& Kiranoudis (2002).

The remainder of this paper is organized as follows. Section 2 reviews some works related to the HFVRP. Section 3 explains the proposed hybrid algorithm. Section 4 contains the results obtained and a comparison with those reported in the literature. Section 5 presents the concluding remarks of this work.

2. Related Works

Since its introduction by Golden et al. (1984), few authors have proposed exact methods for FSM variants. Yaman (2006) suggested valid inequalities and presented lower bounds for the FSMF. Choi \& Tcha (2007) obtained lower bounds for all FSM variants by means of a column generation algorithm based on a set covering formulation. Baldacci et al. (2008) proposed some valid inequalities as well as a two-commodity MIP formulation for the
same variant. The HFVRP is considered to be much harder than corresponding problems with a homogeneous fleet. At that point, the instances proposed by Golden et al. (1984) with only 20 customers were not solved to optimality. Pessoa et al. (2009) (see also Pessoa et al., 2008) proposed a Branch-Cut-and-Price (BCP) algorithm over an extended formulation capable of solving instances with up to 75 customers. More recently, Baldacci \& Mingozzi (2009) put forward a SP based algorithm that uses bounding procedures based on linear relaxation and lagrangian relaxation. That algorithm obtained even better results and could solve a few instances with 100 customers. Nevertheless, such exact algorithms can be very time-consuming and are not suitable for larger instances. On the other hand, there is a rich literature on heuristic methods for the HFVRP.

Many metaheuristic based approaches were proposed for the FSM over the years. Ochi et al. (1998a) proposed a hybrid evolutionary procedure that combines Scatter Search with Genetic Algorithm (GA) to solve the FSMF. A parallel implementation of the same algorithm was presented by Ochi et al. (1998b). Gendreau et al. (1999) developed a heuristic algorithm that combines Tabu Search (TS), adaptive memory and a GENIUS approach.

Renaud \& Boctor (2002) proposed a sweep-based heuristic for the FSMF that employs traditional construction and improvement VRP procedures. Lee et al. (2008) proposed a hybrid algorithm that combines TS and SP. Brandão (2009) put forward a deterministic TS with different procedures for generating initial solutions. A hybrid GA that employs local search as a mutation approach was developed by Liu et al. (2009) to solve the FSMF and the FMSV. Two Memetic Algorithms were developed by Prins (2009) to solve all FSM variants and the HVRPV. Imran et al. (2009) developed a Variable Neighborhood Search (VNS) algorithm that makes use of classical algorithms for generating initial solutions. All FSM variants were considered by the authors. Finally, Penna et al. (2011) proposed an ILS based heuristic for solving the same FSM and HVRP variants considered in the present work.

The HVRP was proposed by Taillard (1999). The author developed an algorithm based on TS, adaptive memory and column generation which was also applied to solve the FSM. Prins (2002) dealt with the HVRP by developing an algorithm that extends a number of VRP classical heuristics followed by a local search procedure based on the Steepest Descent Local Search and TS. Tarantilis et al. (2003) solved the HVRPV by implementing a threshold accepting procedure where a worse solution is only accepted if it is within a given threshold. The same authors (Tarantilis et al., 2004) later presented another threshold accepting procedure to solve the same problem. Li et al. (2007) put forward a record-to-record travel algorithm for the HVRPV. Li et al. (2010) proposed a multi-start adaptive memory procedure combined with Path Relinking and a modified TS to solve the HVRPFV. More recently, Brandão (2011) proposed a TS algorithm for the HVRP which includes additional features such as strategic oscillation, shaking and frequency-based memory.

3. The ILS-RVND-SP Algorithm

The proposed hybrid algorithm, called ILS-RVND-SP, is composed by an ILS (Lourenço et al., 2003) heuristic, that uses a procedure based on the Variable Neighborhood Descent (Mladenovic \& Hansen, 1997) with Random neighborhood ordering (RVND) in the local search phase, and a SP formulation.

Let \mathcal{R} be the set of all possible routes of all vehicle types, $\mathcal{R}_{i} \subseteq \mathcal{R}$ be the subset of routes that contain customer $i \in V^{\prime}$, and $\mathcal{R}_{u} \subseteq \mathcal{R}$ be the set of routes associated with vehicle type $u \in M$. Define y_{j} as the binary variable associated to a route $j \in \mathcal{R}$, and c_{j} as its cost. The SP formulation for the HVRP can be expressed as follows.

$$
\begin{equation*}
\operatorname{Min} \sum_{j \in \mathcal{R}} c_{j} y_{j} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{cc}
\sum_{j \in \mathcal{R}_{i}} y_{j}=1 & \forall i \in V^{\prime} \\
\sum_{j \in \mathcal{R}_{u}} y_{j} \leq m_{u} & \forall u \in M \\
y_{j} \in\{0,1\} . & \tag{4}
\end{array}
$$

The objective function (1) minimizes the sum of the costs by choosing the best combination of routes. Constraints (2) state that a single route from the subset \mathcal{R}_{i} visits costumer $i \in V^{\prime}$. Constraints (3) are limits on the fleet composition. Constraints (4) define the domain of the decision variables. Since this complete formulation has an exponential number of variables, it can not be directly solved. Solving it by branch-and-price or related methods, as done in some proposed exact algorithms, is time-consuming and only practical up to a certain instance size. The ILS-RVND-SP algorithm actually solves a SP problem similar to (1-4), where \mathcal{R} is restricted to a few thousands routes generated by the ILS-RVND heuristic.

In the case of FSM, we drop constraints (3) because there is no upper bound on the number of vehicles of each type. In addition, when the resolution of the restricted SP by a MIP solver exceeds the time limit imposed or the gap between the linear relaxation of the root node and the incumbent solution s^{*} is larger than a given limit (this usually happens when fixed costs are considered), the algorithm enforces the fleet composition to be equal to the one used by s^{*}. Let m_{u}^{*} be the number of vehicles of type u used in s^{*}. The vehicle fleet can be fixed by adding the following constraints:

$$
\begin{equation*}
\sum_{j \in \mathcal{R}_{u}} y_{j}=m_{u}^{*} \quad \forall u \in M \tag{5}
\end{equation*}
$$

Of course, this limits the improvements that can be made by solving the SP problem but it makes the problem much more computationally tractable in
an acceptable time.
Alg. 1 describes the higher-level ILS-RVND-SP algorithm. At first, an empty pool of routes is initialized (line 2). Next, a solution s^{*} is generated using the ILS-RVND heuristic (see Subsection 3.1), which also fills the pool with the routes in every local optimal solution visited (line 3). The variable Cutoff is initialized with the Upper Bound (UB) value associated to s^{*} (line 4). The SP model, given by expressions (1)-(4), is build using the pool of routes (line 5). The SP problem and s^{*} are given to a MIP solver (line 6) which calls the ILS-RVND heuristic whenever an incumbent solution is found (Procedure IncumbentCallback, lines 14-21). If the solution s^{*} is improved in the IncumbentCallback, the Cutof f value is updated (line 19), but s^{*} is not given back to the solver since it may contain a route that does not belong to the set of routes \mathcal{R} of the SP model. We assume that the MIP solver uses a Branch-and-bound or a Branch-and-cut solution procedure. The MIP solver stopping criteria are: (i) optimal solution found; (ii) LB > Cutoff; (iii) RootGap > MaxRootGap, where RootGap is the gap between the LB and the UB after solving the root node and MaxRootGap is the maximum RootGap allowed; (iv) Time > TimeMax, where Time is the execution time of the solver and TimeMax is a time limit imposed for the solver. If the solver has been interrupt due to (iii) or (iv) and the fleet is unlimited, then the SP model is updated by adding constraints (5), MaxRootGap is set to infinity and the solver is called again with the same stopping criteria.

3.1. The ILS-RVND heuristic

The ILS-RVND heuristic is based on the one developed by Penna et al. (2011) for the HFVRP and its steps are summarized in the Alg. 2. The heuristic executes MaxIter iterations and it returns the best solution s^{*} among all iterations. (lines 2-26). The parameter MaxIterILS represents the maximum number of consecutive perturbations allowed without improvements. If an starting solution s_{0} is not provided, a constructive procedure is applied for generating an initial solution (line 4) and the value of

```
Algorithm 1 ILS-RVND-SP
    Procedure ILS-RVND-SP(MaxIter, MaxTime, MaxRootGap)
    RoutePool \(\leftarrow\) NULL
    \(s^{*} \leftarrow\) ILS-RVND (MaxIter, NULL, RoutePool)
    Cutoff \(\leftarrow f\left(s^{*}\right)\)
    SP_model \(\leftarrow\) CreateSetPartitioningModel(RoutePool)
    MIPSolver(SP_Model, s*, Cutoff, MaxRootGap, MaxTime, IncumbentCallback( \(\left.s^{*}\right)\) )
    if ((Time > MaxTime or RootGap > MaxRootGap) and (unlimited fleet)) then
        Update \(S P\) _model \(\{\) Fixing the fleet \(\}\)
        MaxRootGap \(\leftarrow \infty\)
        MIPSolver(SP_Model, \(s^{*}\), Cutoff, MaxRootGap, MaxTime, IncumbentCallback \(\left.\left(s^{*}\right)\right)\)
    end if
    return \(s^{*}\)
    end ILS-RVND-SP
    Procedure IncumbentCallback \(\left(s^{*}\right)\)
    \(s \leftarrow\) Incumbent Solution
    \(s \leftarrow \operatorname{ILS-RVND}(1, s\), NULL \()\)
    if \(f(s)<f\left(s^{*}\right)\) then
        \(s^{*} \leftarrow s\)
        Cutoff \(\leftarrow f(s)\)
    end if
    end IncumbentCallback
```

MaxIterILS is set to $n+v$, where v is the number of vehicles of the generated solution (lines 3-5). This expression was empirically formulated according to preliminary experiments when it was observed that the appropriate number of perturbations was directly proportional to n and v. In contrast, if a solution s_{0} is provided, then MaxIterILS is set to 1000 (lines 6-9). We assume that s_{0} is a relatively good solution and, in view of this, much more trials has to be given for the algorithm to possibly improve it. It is important to mention that we have dealt with instances with up to 360 customers and hence $n+v<1000$. The main ILS loop (lines 11-20) aims to improve the generated initial solution using a RVND procedure (line 12) in the local search phase combined with a set of perturbation mechanisms (line 18). Notice that the perturbation is always performed on the best current solution $\left(s^{\prime}\right)$ of a given iteration (acceptance criterion). The ILS-RVND original structure was slightly modified in order to store routes during its execution. Every time
a local search is performed, the pool of routes is updated by only adding routes that still have not been included in the pool (lines 13). This updating is ignored when ILS-RVND is called during the IncumbentCallback.

```
Algorithm 2 ILS-RVND
    Procedure ILS-RVND(MaxIter, \(s_{0}\), RoutePool)
    for \(i \leftarrow 1, \ldots\), MaxIter do
        if \(s_{0}=\) NULL then
            \(s \leftarrow\) GenerateInitialSolution \((v\), seed)
            MaxIterILS \(\leftarrow n+v\)
        else
            \(s \leftarrow s_{0}\)
            MaxIterILS \(\leftarrow 1000\)
        end if
        iter \(I L S \leftarrow 0\)
        while iter \(I L S \leq\) MaxIterILS do
            \(s^{\prime} \leftarrow \operatorname{RVND}(s)\)
            UpdateRoutePool(RoutePool, \(s^{\prime}\) )
            if \(f(s)<f\left(s^{\prime}\right)\) then
                \(s^{\prime} \leftarrow s\)
                iter \(I L S \leftarrow 0\)
            end if
            \(s \leftarrow \operatorname{Perturb}\left(s^{\prime}\right.\), seed \()\)
            iter \(I L S \leftarrow\) iter \(I L S+1\)
        end while
        if \(f\left(s^{\prime}\right)<f^{*}\) then
            \(s^{*} \leftarrow s^{\prime}\)
            \(f^{*} \leftarrow f\left(s^{\prime}\right)\)
        end if
    end for
    return \(s^{*}\)
    end ILS-RVND
```


3.1.1. Constructive Procedure

The constructive procedure works as follows. For the HVRP, we first initialize empty routes associated to each available vehicle. For the FSM, we first initialize one empty route per vehicle type and whenever it is necessary (i.e., when it is no longer possible to add unrouted customers to the current partial solution), we add an empty route associated to a random vehicle type.

Let the Candidate List (CL) be initially composed by all customers. Each route is initially filled with a seed customer k, randomly selected from the CL. An insertion criterion and an insertion strategy is chosen at random. An initial solution is generated using the selected combination of criterion and strategy. If the fleet is unlimited (FSM), an empty route associated to each type of vehicle is added to the constructed solution s. These empty routes are necessary to allow a possible fleet resizing during the local search phase.

Two insertion criteria were adopted: the Modified Cheapest Feasible Insertion Criterion (MCFIC) and the Nearest Feasible Insertion Criterion. The first consists of a modification of the well-known Cheapest Insertion Criterion by allowing only feasible insertions and also by including an insertion incentive for those customers located far from the depot. The second consists of of an adaptation of the classical Nearest Insertion Criterion by only allowing feasible insertions.

Two insertion strategies were employed, specifically the Sequential Insertion Strategy (SIS) and the Parallel Insertion Strategy (PIS). In SIS, while there is at least one unrouted customer that can be added to the current partial solution, each route is filled with a customer selected using the correspondent insertion criterion, whereas in PIS all routes are considered while evaluating the least-cost insertion. We refer to Penna et al. (2011) for a more detailed description of the constructive procedure.

3.1.2. Local Search

The local search is performed by a VND (Mladenovic \& Hansen, 1997) procedure which utilizes a random neighborhood ordering (RVND). Firstly, a Neighborhood List (NL) containing a predefined number of inter-route moves is initialized. While NL is not empty, a neighborhood $N^{(\eta)} \in$ NL is chosen at random and then the best admissible move is determined. In case of improvement, an intra-route local search is performed on the modified routes. For the FSM, the fleet is updated and the NL is populated with all the neighborhoods. Otherwise, $N^{(\eta)}$ is removed from the NL. The fleet
updating assures that there is exactly one empty vehicle of each type.
Let N^{\prime} be a set composed by r^{\prime} intra-route neighborhood structures. The intra-route local search is as follows. At first, a neighborhood list NL^{\prime} is initialized with all the intra-route neighborhood structures. Next, while NL' is not empty a neighborhood $N^{\prime(\eta)} \in \mathrm{NL}^{\prime}$ is randomly selected and a local search is exhaustively performed until no more improvements are found.

3.1.3. Inter-Route Neighborhood structures

Seven VRP neighborhood structures involving inter-route moves were employed and they are described next. The inter-route neighborhood structures are described next. $\operatorname{Shift}(\mathbf{1}, \mathbf{0})$, a customer k is transferred from a route r_{1} to a route r_{2}. $\operatorname{Swap}(\mathbf{1}, \mathbf{1})$, permutation between a customer k from a route r_{1} and a customer l, from a route r_{2}. $\operatorname{Shift}(2,0)$, two adjacent customers, k and l, are transferred from a route r_{1} to a route r_{2}. This move can also be seen as an arc transferring. In this case, the move examines the transferring of both arcs (k, l) and (l, k). $\operatorname{Swap}(\mathbf{2}, \mathbf{1})$, permutation of two adjacent customers, k and l, from a route r_{1} by a customer k^{\prime} from a route r_{2}. As in Shift $(2,1)$, both $\operatorname{arcs}(k, l)$ and (l, k) are considered. Swap(2,2), permutation between two adjacent customers, k and l, from a route r_{1} by another two adjacent customers k^{\prime} and l^{\prime}, belonging to a route r_{2}. All the four possible combinations of exchanging arcs (k, l) and $\left(k^{\prime}, l^{\prime}\right)$ are considered. Cross, the arc between adjacent clients k and l, belonging to a route r_{1}, and the one between k^{\prime} and l^{\prime}, from a route r_{2}, are both removed. Next, an arc is inserted connecting k and l^{\prime} and another is inserted connecting k^{\prime} and l. K-Shift, a subset of consecutive customers K is transferred from a route r_{1} to the end of a route r_{2}. In this case, it is assumed that the variable and fixed costs of r_{2} is smaller than those of r_{1}. It should be pointed out that the move is also taken into account when r_{2} is an empty route.

The solution spaces of the seven neighborhoods are explored exhaustively, that is, all possible combinations are examined, and the best improvement strategy is considered. The computational complexity of each one of these
moves is $\mathcal{O}\left(n^{2}\right)$. Only feasible moves are admitted, i.e., those that do not violate the maximum load constraints. Therefore, every time an improvement occurs, the algorithm checks whether this new solution is feasible or not. This checking is trivial and it can be performed in a constant time by just verifying if the sum of the customers demands of a given route does not exceed the vehicle's capacity at the depot.

3.1.4. Intra-Route Neighborhood structures

Five well-known intra-route neighborhood structures were adopted. The set N^{\prime} is composed by Or-opt, 2-opt and exchange moves. The computational complexity of these neighborhoods is $\mathcal{O}\left(\bar{n}^{2}\right)$, where \bar{n} is the number of customers of the modified routes. Their description is as follows. Reinsertion, one customer is removed and inserted in another position of the route. Or-opt2, two adjacent customers are removed and inserted in another position of the route. Or-opt3, three adjacent customers are removed and inserted in another position of the route. 2-opt, two nonadjacent arcs are deleted and another two are added in such a way that a new route is generated. Exchange, permutation between two customers.

3.2. Perturbation Mechanisms

A set P of three perturbation mechanisms were adopted. Whenever the Perturb() function is called, one of the moves described below is randomly selected. Multiple-Swap $(\mathbf{1}, \mathbf{1}), P^{(1)}$, multiple $\operatorname{Swap}(1,1)$ moves are performed randomly. After some preliminary experiments, the number of successive moves was empirically set to $0.5 v$. Multiple-Shift $(\mathbf{1}, \mathbf{1}), P^{(2)}$, multiple $\operatorname{Shift}(1,1)$ moves are performed randomly. The $\operatorname{Shift}(1,1)$ consists in transferring a customer k from a route r_{1} to a route r_{2}, whereas a customer l from r_{2} is transferred to r_{1}. In this case, the number of moves is randomly selected from the interval $\{0.5 v, 0.6 v, \ldots, 1.4 v, 1.5 v\}$. Split, $P^{(3)}$, a route r is divided into smaller routes. Let $M^{\prime}=\{2, \ldots, m\}$ be a subset of M composed by all vehicle types, except the one with the smallest capacity. Firstly, a route
$r \in s$ (let $s=s^{\prime}$) associated with a vehicle $u \in M^{\prime}$ is selected at random. Next, while r is not empty, the remaining customers of r are sequentially transferred to a new randomly selected route $r^{\prime} \notin s$ associated with a vehicle $u^{\prime} \in\{1, \ldots, u-1\}$ in such a way that the capacity of u^{\prime} is not violated. The new generated routes are added to the solution s while the route r is removed from s. The procedure described is repeated multiple times where the number of repetitions is chosen at random from the interval $\{1,2, \ldots, v\}$. This perturbation was applied only for the FSM, since it does not make sense for the HVRP. Only feasible perturbations moves are accepted.

4. Computational Results

The algorithm ILS-RVND-SP was coded in $\mathrm{C}++(\mathrm{g}++4.4 .3)$ and executed in an Intel Core i7 Processor 2.93 GHz with 8 GB of RAM running Ubuntu Linux 10.04 (kernel version 2.6.32). The SP formulation was implemented using the solver CPLEX 12.2. The developed approach was tested in well-known instances, containing up to 100 customers, namely those proposed by Golden et al. (1984) and adapted by Taillard (1999) and Choi \& Tcha (2007). Table 1 describes the characteristics of these instances. We also tested ILS-RVND-SP in the instances of Brandão (2011), containing up to 199 customers, and Li et al. (2007), containing up to 360 customers. Their description can be found in Tables 2 and 3, respectively.

The following parameters values were selected after some preliminary experiments: MaxIter $=30$, MaxTime $=30$ seconds, MaxRootGap $=$ 0.02. For all five HFVRP variants, each instance was executed 10 times and the results are presented in Subsections 4.2-4.6. A comparison is performed with the best known algorithms reported in the literature.

In the tables presented hereafter, Inst. denotes the number of the testproblem, \boldsymbol{n} is the number of customers, BKS represents the best known solution reported in the literature, Best Sol. and Time indicate, respectively, the best solution and the average computational time associated to
the correspondent work, Avg. Sol. represents the average solution of the 10 runs, Gap denotes the gap between the best solution found by ILS-RVNDSP and the best known solution, Avg. Gap corresponds to the gap between the average solution found by ILS-RVND-SP and the best known solution. Scaled time indicates the scaled time in seconds of each computer using the performances, in Mflop/s, of computers listed in Dongarra (2010) for our 2.93 GHz . The best solutions are highlighted in boldface and the solutions improved by the ILS-RVND-SP algorithm are underlined.

4.1. Evaluating the performance of each phase of ILS-RVND-SP

In this subsection we are interested in evaluating the performance of each phase of ILS-RVND-SP, i.e., ILS-RVND and SP. Table 4 illustrates the influence, in terms of computing time and solution cost, of both phases in the final solution on each set of instances. It can be observed that phase 2 is always capable of substantially improving the solutions found in the first phase. It is noteworthy to mention that the number of perturbations without improvements of phase 1 is considerably smaller from those adopted in Penna et al. (2011), leading to a faster procedure but less effective in terms of solution quality. Nevertheless, when including phase 2, ILS-RVND-SP not only finds better average solutions but still outperforms the ILS-RVND presented in Penna et al. (2011) in terms of computational time, as it will be shown in the following subsections.

4.2. HVRPFV

Baldacci \& Mingozzi (2009), Li et al. (2010) and Penna et al. (2011) were, to our knowledge, the only authors that dealt with the HVRPFV instances considered in this work. By observing the results presented in Table 5, it can be noted that the ILS-RVND-SP was found capable to improve the result of one instance and to equal the BKS of the remaining ones. The average gap between the Avg. Sols. obtained by ILS-RVND-SP and the BKSs was 0.14%.

4.3. $H V R P V$

Tables 7-8 present a comparison between the results obtained by the ILS-RVND-SP and the best heuristics proposed in the literature, namely those of Taillard (1999), Li et al. (2007), Prins (2009) and Penna et al. (2011), in the set of instances of Taillard (1999). All proven optimal solutions were found by the proposed algorithm and in the only instance where the optimal solution is not known, the ILS-RVND-SP, as well as the algorithm of Li et al. (2007), Prins (2009) and Penna et al. (2011), failed to obtain the best solution reported by Taillard (1999). The average gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs was 0.16% and the average computational time was 3.61 seconds. In the set of instances proposed by Brandão (2011), ILS-RVND-SP outperformed the TS algorithm of same author in terms of solution quality, with an average gap of 0.09%, as can be observed in Tables 9-10. Finally, in the large size concentric instances of Li et al. (2007), ILS-RVND-SP did not perform as good as the other approaches from the literature and the average gap was 2.33% (see Tables 11-12). Despite the poor performance of the proposed algorithm in 3 test-problems of this last particular benchmark, we strongly believe that instances with such geographical distribution are seldom found in practice.

4.4. FMSFV

In Tables 13-14 a comparison is performed between the results found by the ILS-RVND-SP and the best heuristics available in the literature, particularly the ones of Choi \& Tcha (2007), Prins (2009), Imran et al. (2009) and Penna et al. (2011). The ILS-RVND-SP was found capable to improve one solution and to equal the result of the remaining ones, outperforming the other algorithms in terms of number of best solutions found. The average gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs was 0.02%. Moreover, the average computational time was quite similar to the one reported by Prins (2009), i.e., between 6 and 7 seconds.

Inst.	n	A				B				C				D				E				F			
		Q_{A}	f_{A}	r_{A}	m_{A}	Q_{B}	f_{B}	r_{B}	m_{B}	Q_{C}	f_{C}	r_{C}	m_{C}	$\overline{Q_{D}}$	f_{D}	r_{D}	m_{D}	Q_{E}	f_{E}	r_{E}	m_{E}	Q_{F}	f_{F}	r_{F}	
3	20	20	20	1.0	20	30	35	1.1	20	40	50	1.2	20	70	120	1.7	20	120	225	2.5	20				
4	20	60	1000	1.0	20	80	1500	1.1	20	150	3000	1.4	20												
5	20	20	20	1.0	20	30	35	1.1	20	40	50	1.2	20	70	120	1.7	20	120	225	2.5	20				
6	20	60	1000	1.0	20	30	1500	1.1	20	150	3000	1.4	20												
13	50	20	20	1.0	4	30	35	1.1	2	40	50	1.2	4	70	120	1.7	4	120	225	2.5	2	200	400	3.2	1
14	50	120	1000	1.0	4	160	1500	1.1	2	300	3500	1.4	1												
15	50	50	100	1.0	4	100	250	1.6	3	160	450	2.0	2												
16	50	40	100	1.0	2	80	200	1.6	4	140	400	2.1	3												
17	75	50	25	1.0	4	120	80	1.2	4	200	150	1.5	2	350	320	1.8	1								
18	75	20	10	1.0	4	50	35	1.3	4	100	100	1.9	2	150	180	2.4	2	250	400	2.9	1	400	800	3.2	1
19	100	100	500	1.0	4	200	1200	1.4	3	300	2100	1.7	3												
20	100	60	100	1.0	6	140	300	1.7	4	200	500	2.0	3												

\footnotetext{
Table 2: HFVRP Instances of Brandão (2011)

Inst	n	A			B			C			D			E				F			
		Q_{A}	v_{A}	n_{A}	Q_{B}	v_{B}	n_{B}	Q_{C}	v_{C}	n_{C}	Q_{D}	v_{D}	n_{D}	Q_{E}	v_{E}			Q_{F}	v_{F}	n_{F}	
N1	150	50	1	5	100	1.5	4	150	1.9	4	200	2.2	3	250	2.6		2	350	3.2		1
N2	199	50	1	8	100	1.5	6	150	1.9	5	200	2.2	4	250	2.		2				
N3	120	50	1	6	100	1.5	3	150	1.9	3	200	2.2	2								
N4	100	50	1	4	120	1.6	4	180	2.1	4	240	2.6	2								
N5	134	900	1	5	1500	1.5	3	2000	1.8	2	2500	2.2	1								

Table 3: HFVRP Instances of Li et al. (2007)

Inst.	n	A			B			C			D			E			F		
		Q_{A}	v_{A}	n_{A}	Q_{B}	v_{B}	n_{B}	Q_{C}	v_{C}	n_{C}	Q_{D}	v_{D}	n_{D}	Q_{E}	v_{E}	n_{E}	Q_{F}	v_{F}	n_{F}
H1	200	50	1	8	100	1.1	6	200	1.2	4	500	1.7	3	1000	2.5	1			
$\mathrm{H} 2{ }^{\text {a }}$	240	50	1	10	100	1.1	5	200	1.2	5	500	1.7	4	1000	2.5	1			
H3	280	50	1	10	100	1.1	5	200	1.2	5	500	1.7	4	1000	2.5	2			
H4	320	50	1	10	100	1.1	8	200	1.2	5	500	1.7	2	1000	2.5	2	1500	3	1
H5 ${ }^{\text {a }}$	360	50	1	10	100	1.2	8	200	1.5	5	500	1.8	1	1500	2.5	2	2000	3	1

${ }^{a}$: Using the values presented in Brandão (2011) (see Brandão (2011), p. 146 for more details).

4.5. FSMF

Tables 15-16 illustrate the results obtained by the ILS-RVND-SP for the FSMF. These results are compared with those of Choi \& Tcha (2007), Brandão (2009), Prins (2009), Liu et al. (2009) and Penna et al. (2011). It can be seen that the proposed algorithm equaled the results of all instances, with the exception of instance 20, where a new improved solution was found. Once again the ILS-RVND-SP outperformed the algorithms proposed in the literature in terms of best solutions obtained. The average gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs was 0.08\%. Furthermore, it can be seen that the average computational time of our algorithm was smaller than those of the literature.

4.6. FMSV

The best results obtained in the literature for the FMSV using heuristic approaches were reported by Choi \& Tcha (2007), Brandão (2009), Prins (2009), Imran et al. (2009) and Penna et al. (2011). These results along with those found by the ILS-RVND-SP are presented in Tables $17-18$. In this variant, the optimal solutions of all instances were proven in the literature. From Table 17, it can be observed that the ILS-RVND-SP was capable of finding all optimal solutions and the average gap between the Avg. Sols. produced by the ILS-RVND-SP and the BKSs was 0.06%. One can also verify that our algorithm presented the best performance in terms of best solutions and average computational time. Brandão (2011) presented results

Table 4: Performance evaluation of each phase of ILS-RVND-SP

Variant (Benchmark set)	Phase 1 (ILS-RVND)		Phase 2 (SP)		Avg. Number of Routes (columns)
	Avg. Gap (\%)	Time (s)	Avg. Gap (\%)	Time (s)	
HVRPFV (Taillard, 1999)	0.86	2.38	0.17	5.35	4031
HVRPV (Taillard, 1999)	1.09	2.42	0.18	1.61	4110
HVRPV (Brandão, 2011)	0.89	20.09	0.05	33.50	15079
HVRPV (Li et al., 2007)	2.37	247.68	2.15	55.09	61345
FSMFV (Taillard, 1999)	1.02	1.73	0.01	5.83	2190
FSMF (Golden et al., 1984)	1.44	2.18	0.11	6.91	3338
FSMV (Taillard, 1999)	0.85	2.15	0.12	1.17	3596
FMSV (Brandão, 2011)	2.63	23.26	0.15	17.45	17942
Average	1.39	37.74	0.37	15.86	13954

for the FSMV by running the TS algorithm proposed in Brandão (2009) in the instances proposed by the same author. We compare such results with those found by ILS-RVND-SP in Tables 19-20, where it can be seen that ILS-RVND-SP was capable to improve the result of 2 instances and to equal the solution cost of the remaining ones.

5. Concluding Remarks

This article dealt with Heterogeneous Fleet Vehicle Routing Problem (HFVRP). This kind of problem often arises in practical applications and one can affirm that this model is more realistic than the classical homogeneous Vehicle Routing Problem. Five HFVRP variants involving limited and unlimited fleet with fixed and/or variable costs were considered. These variants were solved by a hybrid algorithm based on the Iterated Local (ILS) Search metaheuristic, that uses Variable Neighborhood Descent with random neighborhood ordering (RVND) in the local search phase, combined with a Set Partitioning Formulation.

The proposed hybrid algorithm (ILS-RVND-SP) was tested in 67 benchmark instances with up to 360 customers and it was found capable to obtain 8 new improved solutions, to equal the result of 54 instances and failed to obtain the best known solution of only 5 instances.
Table 5: Results for HVRPFV instances

Inst.	n	BKS	MAMP Li et al. ${ }^{1}$		ILS-RVND Penna et al. ${ }^{2}$		ILS-RVND-SP				
			Best Sol.	Time ${ }^{a}$ (s)	Best Sol.	Time ${ }^{b}$ (s)	Best Sol.	Gap (\%)	$\begin{aligned} & \text { Avg. } \\ & \text { Sol. }{ }^{b} \end{aligned}$	Time ${ }^{a}$ (s)	Gap a (\%)
13	50	3185.09^{a}	3185.09	110	3185.09	19.84	3185.09	0.00	3186.32	1.99	0.04
14	50	10107.53^{a}	10107.53	34	10107.53	11.28	10107.53	0.00	10110.61	1.29	0.03
15	50	$3065.29^{\text {a }}$	3065.29	46	3065.29	12.48	3065.29	0.00	3065.29	1.77	0.00
16	50	$3265.41{ }^{\text {a }}$	3265.41	99	3265.41	12.22	3265.41	0.00	3273.15	1.67	0.24
17	75	$2076.96{ }^{\text {a }}$	2076.96	148	2076.96	29.59	2076.96	0.00	2081.55	5.95	0.22
18	75	$3743.58{ }^{\text {a }}$	3743.58	119	3743.58	36.38	3743.58	0.00	3758.83	16.47	0.41
19	100	10420.34	10420.34	287	10420.34	73.66	10420.34	0.00	10421.05	15.80	0.01
20	100	4788.49	4832.17	200	4788.49	68.46	4761.26	-0.57	4822.16	16.87	0.55

[^1]Table 8: Summary of results for HVRPV

Method	Best Run			Average ${ }^{1}$	
	Gap (\%)	BKS Found	BKS Improved	Gap (\%)	Scaled Time (s)
HCG (Taillard, 1999)	0.93	1	0	2.50	9.30
BATA (Tarantilis et al., 2004)	0.62	1	0	-	$27.24{ }^{2}$
HRTR (Li et al., 2007)	0.03	7	0	-	57.16^{4}
SMA-D2 (Prins, 2009)	0.08	6	0	-	25.38^{3}
ILS-RVND (Penna et al., 2011)	0.03	7	0	0.22	31.89
ILS-RVND-SP	0.03	7	0	0.18	4.03

[^2]Table 9: Results for HVRPV on the instances of Brandão (2011)

Inst.	n	BKS	TSA Brandão		ILS-RVND-SP				
			Best Sol.	Time ${ }^{1}$ (s)	Best Sol.	Gap (\%)	$\begin{aligned} & \hline \text { Avg. } \\ & \text { Sol. }{ }^{a} \end{aligned}$	Time ${ }^{a}$ (s)	Gap a (\%)
N1	150	2243.76	2243.76	-	$\underline{2235.87}$	-0.35	2244.31	51.50	0.02
N2	199	2874.13	2874.13	-	$\underline{2864.83}$	-0.32	2906.24	102.77	1.12
N3	120	2386.90	2386.90	-	$\underline{2378.99}$	-0.33	2382.10	51.71	-0.20
N4	100	1839.22	1839.22	-	1839.22	0.00	1839.22	9.64	0.00
N5	134	2062.48	2062.48	-	2047.81	-0.71	2047.81	52.33	-0.71

${ }^{a}$: Average of 10 runs; ${ }^{1}$: Pentium IV $2.6 \mathrm{GHz}(2266 \mathrm{Mflop} / \mathrm{s})$

Table 10: Summary of results for HVRPV on the instances of Brandão (2011)

Method	Best Run			Average ${ }^{1}$	
	Gap (\%)	BKS Found	BKS Improved	Gap (\%)	Scaled Time
TSA (Brandão, 2011)	0.00	5	0	-	-
ILS-RVND-SP	-0.34	1	4	0.05	53.59

${ }^{1}$: Average of 10 runs for ILS-RVND-SP.

Table 11: Results for HVRPV on the instances of Li et al. (2007)

Inst.	n	BKS	HRTR		TSA Brandão		ILS-RVND-SP				
			Li et al.								
			Best Sol.	Time ${ }^{1}$ (s)	Best Sol.	Time ${ }^{2}$ (s)	Best Sol.	Gap (\%)	Avg. Sol. ${ }^{b}$	Time ${ }^{b}$ (s)	$\begin{gathered} \text { Gap }^{b} \\ (\%) \end{gathered}$
H1	200	12050.08	12067.65	687.82	12050.08	1395	12050.08	0.00	12052.69	72.10	0.02
H2	240	10208.32^{a}	10234.40	995.27	10226.17	3650	10329.15	1.18	10436.20	176.43	2.23
H3	280	16223.39^{a}	16231.80	1437.56	16230.21	2822	16282.41	0.36	16526.89	259.61	1.87
H4	320	17458.65	17576.10	2256.35	17458.65	8734	17743.68	1.63	18022.37	384.52	3.23
H5	360	23166.56^{a}	-	-	23220.72	13321	23493.87	1.41	23948.97	621.17	3.38

${ }^{a}$: Found by Brandão (2011) using TSA with a different calibration; ${ }^{b}$: Average of 10 runs;
${ }^{1}$: AMD Athlon 1.0 GHz (1168 Mflop/s); ${ }^{2}$: Pentium IV $2.6 \mathrm{GHz}(2266 \mathrm{Mflop} / \mathrm{s})$

Table 12: Summary of results for HVRPV on the instances of Li et al. (2007)

Method	Best Run			Average ${ }^{1}$	
	Gap (\%)	BKS Found	BKS Improved	Gap (\%)	Scaled Time
HRTR (Li et al., 2007)	$0.28{ }^{\text {a }}$	0	0	-	346.22^{2}
TSA (Brandão, 2011)	$0.09(0.05)^{a}$	2	0	-	1246.28^{2}
ILS-RVND-SP	$0.92(0.80)^{a}$	1	0	$2.15(1.84)^{a}$	302.77

[^3]| Inst. | n | BKS | $\begin{aligned} & \text { CG } \\ & \text { Choi and Tcha }{ }^{1} \end{aligned}$ | | SMA-U1$\text { Prins }{ }^{2}$ | | VNS1
 Imran et al ${ }^{3}$ | | ILS-RVND
 Penna et al^{4} | | ILS-RVND-SP | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | |
| | | | Best Sol. | Time (s) | Best
 Sol. | Time
 (s) | Best
 Sol. | Time
 (s) | Best
 Sol. | Time ${ }^{b}$
 (s) | Best
 Sol. | Gap
 (\%) | Avg. Sol. | Time ${ }^{c}$
 (s) | Gap c
 (\%) |
| 3 | 20 | 1144.22^{a} | 1144.22 | 0.25 | 1144.22 | 0.01 | 1144.22 | 19 | 1144.22 | 4.05 | 1144.22 | 0.00 | 1144.22 | 0.34 | 0.00 |
| 4 | 20 | 6437.33^{a} | 6437.33 | 0.45 | 6437.33 | 0.07 | 6437.33 | 17 | 6437.33 | 3.03 | 6437.33 | 0.00 | 6437.33 | 0.31 | 0.00 |
| 5 | 20 | $1322.26^{\text {a }}$ | 1322.26 | 0.19 | 1322.26 | 0.02 | 1322.26 | 24 | 1322.26 | 4.85 | 1322.26 | 0.00 | 1322.26 | 0.28 | 0.00 |
| 6 | 20 | 6516.47^{a} | 6516.47 | 0.41 | 6516.47 | 0.07 | 6516.47 | 21 | 6516.47 | 3.01 | 6516.47 | 0.00 | 6516.47 | 0.32 | 0.00 |
| 13 | 50 | $2964.65^{\text {a }}$ | 2964.65 | 3.95 | 2964.65 | 0.32 | 2964.65 | 328 | 2964.65 | 27.44 | 2964.65 | 0.00 | 2964.65 | 1.70 | 0.00 |
| 14 | 50 | 9126.90^{a} | 9126.90 | 51.70 | 9126.90 | 8.90 | 9126.90 | 250 | 9126.90 | 11.66 | 9126.90 | 0.00 | 9126.90 | 1.53 | 0.00 |
| 15 | 50 | $2634.96{ }^{\text {a }}$ | 2634.96 | 4.36 | 2635.21 | 1.04 | 2634.96 | 275 | 2634.96 | 13.83 | 2634.96 | 0.00 | 2634.96 | 1.34 | 0.00 |
| 16 | 50 | 3168.92^{a} | 3168.92 | 5.98 | 3169.14 | 13.05 | 3168.95 | 313 | 3168.92 | 18.20 | 3168.92 | 0.00 | 3168.92 | 6.72 | 0.00 |
| 17 | 75 | 2004.48^{a} | 2023.61 | 68.11 | 2004.48 | 23.92 | 2004.48 | 641 | 2004.48 | 43.68 | 2004.48 | 0.00 | 2007.12 | 6.96 | 0.13 |
| 18 | 75 | 3147.99^{a} | 3147.99 | 18.78 | 3153.16 | 24.85 | 3153.67 | 835 | 3149.63 | 47.80 | 3147.99 | 0.00 | 3148.91 | 4.21 | 0.03 |
| 19 | 100 | $8661.81{ }^{\text {a }}$ | 8664.29 | 905.20 | 8664.67 | 163.25 | 8666.57 | 1411 | 8661.81 | 59.13 | 8661.81 | 0.00 | 8662.89 | 29.86 | 0.01 |
| 20 | 100 | 4153.02 | 4154.49 | 53.02 | 4154.49 | 41.25 | 4164.85 | 1460 | 4153.02 | 59.07 | 4153.02 | 0.00 | 4153.12 | 37.21 | 0.00 |

3. Pentium M 1.7 GHz ($1477 \mathrm{Mflop} / \mathrm{s}$) ${ }^{4}$. Intel i7 293 GHz ($5839 \mathrm{Mflop} / \mathrm{s}$)
Table 14: Summary of results for FMSFV
${ }^{1}$: Average of 5 runs for Choi \& Tcha (2007) and Prins (2009), of 30 runs for Penna et al. (2011) and of 10 runs for ILS-RVND-SP; ${ }^{2}$: Total Time.

Inst.	n	BKS	$\begin{aligned} & \text { CG } \\ & \text { Choi and Tcha }{ }^{1} \end{aligned}$		TSA1 Brandão ${ }^{2}$		$\begin{aligned} & \text { SMA-D1 } \\ & \text { Prins }^{3} \end{aligned}$		GA Liu et al ${ }^{4}$		$\begin{aligned} & \text { ILS-RVND } \\ & \text { Penna et al. }{ }^{5} \end{aligned}$		ILS-RVND-SP				
			Best Sol.	$\begin{gathered} \text { Time } \\ (\mathrm{s}) \end{gathered}$	Best Sol.	Time (s)	Best Sol.	Time (s)	Best Sol.	Time ${ }^{b}$ (s)	Best Sol.	$\begin{gathered} \text { Time }^{b} \\ (\mathrm{~s}) \\ \hline \end{gathered}$	Best Sol.	Gap (\%)	Avg. Sol. ${ }^{c}$	Time ${ }^{c}$ (s)	$\begin{gathered} \text { Gap }^{c} \\ (\%) \\ \hline \end{gathered}$
3	20	$961.03{ }^{\text {a }}$	961.03	0	961.03	21	961.03	0.04	961.03	21	961.03	4.91	961.03	0.00	961.03	0.28	0.00
4	20	6437.33^{a}	6437.33	1	6437.33	22	6437.33	0.03	6437.33	18	6437.33	3.16	6437.33	0.00	6437.33	0.25	0.00
5	20	1007.05^{a}	1007.05	1	1007.05	20	1007.05	0.09	1007.05	13	1007.05	5.88	1007.05	0.00	1008.76	0.25	0.17
6	20	6516.47^{a}	6516.47	0	6516.47	25	6516.47	0.08	6516.47	22	6516.47	3.07	6516.47	0.00	6516.47	0.20	0.00
13	50	2406.36^{a}	2406.36	10	2406.36	145	2406.36	17.12	2406.36	91	2408.41	30.29	2406.36	0.00	2411.31	1.96	0.21
14	50	9119.03^{a}	9119.03	51	9119.03	220	9119.03	19.66	9119.03	42	9119.03	11.89	9119.03	0.00	9119.03	1.64	0.00
15	50	2586.37^{a}	2586.37	10	2586.84	110	2586.37	25.1	2586.37	48	2586.37	20.24	2586.37	0.00	2586.37	6.02	0.00
16	50	2720.43^{a}	2720.43	11	2728.14	111	2729.08	16.37	2724.22	107	2724.22	20.67	2720.43	0.00	2724.55	3.85	0.15
17	75	1734.53^{a}	1744.83	207	1736.09	322	1746.09	52.22	1734.53	109	1734.53	52.49	1734.53	0.00	1744.23	11.61	0.56
18	75	2369.65^{a}	2371.49	70	2376.89	267	2369.65	36.92	2369.65	197	2371.48	55.35	2369.65	0.00	2373.79	11.83	0.17
19	100	$8661.81{ }^{a}$	8664.29	1179	8667.26	438	8665.12	169.93	8662.94	778	8662.86	63.92	8661.81	0.00	8662.54	25.15	0.01
20	100	4037.90	4039.49	264	4048.09	601	4044.78	172.73	4038.46	1004	4037.90	93.88	$\underline{4032.81}$	-0.13	4038.63	46.06	0.02

${ }^{3}$: Pentium IV M $1.8 \mathrm{GHz}(1564 \mathrm{Mflop} / \mathrm{s})$; ${ }^{4}$: Pentium IV $3.0 \mathrm{GHz}(3181 \mathrm{Mflop} / \mathrm{s}) ;{ }^{5}$: Intel i7 2.93 GHz ($5839 \mathrm{Mflop} / \mathrm{s}$).

Table 16: Summary of results for FSMF							
Method	Best Run			Average 1			
	Gap (\%)	BKS Found	BKS Improved		Gap (\%)	Scaled Time (s)	
CG (Choi \& Tcha, 2007)	0.06	8	0	0.17	58.36		
TSA1 (Brandão, 2009)	0.08	6	0	-	39.95^{2}		
SMA-D1 (Prins, 2009)	0.10	8	0	-	10.92		
GA (Liu et al., 2009)	0.01	10	0	0.19	107.96		
ILS-RVND (Penna et al., 2011)	0.01	9	0	0.23	30.48		
ILS-RVND-SP	-0.01	11	1	0.11	9.09		

[^4]| Inst. | n | BKS | $\begin{aligned} & \text { CG } \\ & \text { Choi and Tcha }{ }^{1} \end{aligned}$ | | TSA2
 Brandão ${ }^{2}$ | | $\begin{aligned} & \text { SMA-U2 } \\ & \text { Prins }^{3} \end{aligned}$ | | VNS2
 Imran et al ${ }^{4}$ | | ILS-RVND
 Penna et al. ${ }^{5}$ | | ILS-RVND-SP | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Best Sol. | Time
 (s) | Best Sol. | Time
 (s) | Best Sol. | Time
 (s) | Best
 Sol. | $\begin{gathered} \text { Time }^{b} \\ (\mathrm{~s}) \\ \hline \end{gathered}$ | Best
 Sol. | Time c
 (s) | Best Sol. | Gap
 (\%) | $\begin{aligned} & \text { Avg. } \\ & \text { Sol. }{ }^{d} \end{aligned}$ | Time ${ }^{d}$
 (s) | $\begin{gathered} \text { Gap }^{d} \\ (\%) \\ \hline \end{gathered}$ |
| 3 | 20 | 623.22^{a} | 623.22 | 0.19 | - | | | | | | 623.22 | 4.58 | 623.22 | 0.00 | 623.22 | 0.25 | 0.00 |
| 4 | 20 | 387.18^{a} | 387.18 | 0.44 | - | | | | | | 387.18 | 2.85 | 387.18 | 0.00 | 387.34 | 0.23 | 0.04 |
| 5 | 20 | 742.87^{a} | 742.87 | 0.23 | | | | | | | 742.87 | 5.53 | 42.87 | 0.00 | 742.87 | 0.22 | 0.00 |
| 6 | 20 | 415.03^{a} | 415.03 | 0.92 | - | | - | | | | 415.03 | 3.37 | 415.03 | 0.00 | 415.03 | 0.18 | 0.00 |
| 13 | 50 | 1491.86^{a} | 1491.86 | 4.11 | 1491.86 | 101 | 1491.86 | 3.45 | 1491.86 | 310 | 1491.86 | 31.62 | 1491.86 | 0.00 | 1492.01 | 1.91 | 0.01 |
| 14 | 50 | $603.21{ }^{\text {a }}$ | 603.21 | 20.41 | 603.21 | 135 | 603.21 | 0.86 | 603.21 | 161 | 603.21 | 14.66 | 603.21 | 0.00 | 605.00 | 1.61 | 0.30 |
| 15 | 50 | 999.82 ${ }^{\text {a }}$ | 999.82 | 4.61 | 999.82 | 137 | 999.82 | 9.14 | 999.82 | 218 | 999.82 | 15.33 | 999.82 | 0.00 | 1001.03 | 1.47 | 0.12 |
| 16 | 50 | 1131.00^{a} | 1131.00 | 3.36 | 1131.00 | 95 | 1131.00 | 13.00 | 1131.00 | 239 | 1131.00 | 17.77 | 1131.00 | 0.00 | 1131.85 | 1.44 | 0.07 |
| 17 | 75 | 1038.60^{a} | 1038.60 | 69.38 | 1038.60 | 312 | 1038.60 | 9.53 | 1038.60 | 509 | 1038.60 | 49.18 | 1038.60 | 0.00 | 1042.48 | 6.39 | 0.37 |
| 18 | 75 | 1800.80^{a} | 1801.40 | 48.06 | 1801.40 | 269 | 1800.80 | 18.92 | 1800.80 | 606 | 1800.80 | 53.88 | 1800.80 | 0.00 | 1802.89 | 4.75 | 0.12 |
| 19 | 100 | 1105.44^{a} | 1105.44 | 182.86 | 1105.44 | 839 | 1105.44 | 52.31 | 1105.44 | 1058 | 1105.44 | 77.84 | 1105.44 | 0.00 | 1106.71 | 10.62 | 0.11 |
| 20 | 100 | 1530.43^{a} | 1530.43 | 98.14 | 1531.83 | 469 | 1535.12 | 104.41 | 1533.24 | 1147 | 1530.52 | 88.02 | 1530.43 | 0.00 | 1534.23 | 10.88 | 0.25 |

[^5]2: Pentium M $1.4 \mathrm{GHz}(1564 \mathrm{Mflop} / \mathrm{s}) ;{ }^{3}$: Pentium IV M $1.8 \mathrm{GHz}(1564 \mathrm{Mflop} / \mathrm{s})$; ${ }^{4}$: Pentium M $1.7 \mathrm{GHz}(1477 \mathrm{Mflop} / \mathrm{s}) ;{ }^{5}$: Intel i7 $2.93 \mathrm{GHz}(5839 \mathrm{Mflop} / \mathrm{s})$.

Method	Best Run			Average ${ }^{1}$	
	Gap (\%)	BKS Found	BKS Improved	Gap (\%)	Scaled Time (s)
CG (Choi \& Tcha, 2007)	0.00	11	0	0.12	21.05
TSA1 (Brandão, 2009)	0.02	6	0	-	61.36^{2}
SMA-D1 (Prins, 2009)	0.04	7	0	-	$8.46{ }^{\text {a }}$
VNS1 (Imran et al., 2009)	0.02	7	0	-	134.32
ILS-RVND (Penna et al., 2011)	$0.00(0.00)^{a}$	$11(7)^{a}$	0	$0.17(0.26)^{a}$	$30.38(43.54)^{a}$
ILS-RVND-SP	$0.00(0.00)^{a}$	$12(8)^{a}$	0	$0.12(0.09)^{a}$	3.33 (4.29) ${ }^{\text {a }}$

1: Average of 5 runs for Choi \& Tcha (2007) and Prins (2009), 10 runs for Liu et al. (2009) and ILS-RVND-SP; ${ }^{2}$: Determistic Algorithm; ${ }^{a}$: Values in instances $13-20$

Table 19: Results for FMSV on the instances of Brandão (2011)

Inst.	n	BKS			ILS-RVND-SP				
			Brandão						
			Best	Time ${ }^{1}$	Best	Gap	Avg.	Time ${ }^{\text {a }}$	Gap ${ }^{\text {a }}$
			Sol.	(s)	Sol.	(\%)	Sol. ${ }^{\text {a }}$	(s)	(\%)
N1	150	2220.01	2220.01	-	$\underline{2212.77}$	-0.33	2219.66	39.60	-0.02
N2	199	2827.76	2827.76	-	$\underline{2823.75}$	-0.14	2844.96	106.97	0.61
N3	120	2234.57	2234.57	-	2234.57	0.00	2234.85	19.27	0.01
N4	100	1822.78	1822.78	-	1822.78	0.00	1823.07	8.38	0.02
N5	134	2016.79	2016.79	-	2016.79	0.00	2019.26	29.35	0.12

${ }^{a}$: Average of 10 runs 1 : Pentium IV $2.6 \mathrm{GHz}(2266 \mathrm{Mflop} / \mathrm{s})$

Table 20: Summary of results for FMSV on the instances of Brandão (2011)

Method	Best Run			Average 1	
	Gap	BKS Found	BKS Improved	Gap	Scaled Time
TSA (Brandão, 2009) ${ }^{a}$	0.00	5	0	-	-
ILS-RVND-SP	-0.09	3	2	0.15	40.71

${ }^{1}$: Average of 10 runs for ILS-RVND-SP; ${ }^{a}$: Presented in Brandão (2011) using TSA version of Brandão (2009)

A. New best solutions

A.1. HVRPFV

Instance 20: 12 routes, cost 4761.26
(A): $018838451784600 ;(\mathrm{A}): 074224115435720 ;(\mathrm{A}): 091443814420 ;(\mathrm{A}): 092371009899$ $9660 ;(\mathrm{A}): 070783429242555540 ;(\mathrm{B}): 01280687937776280$; (B): 052748191162883169 $0 ;(\mathrm{B}): 0949597871358530 ;(\mathrm{B}): 0103290636449364746820 ;(\mathrm{C}): 08956186168593590$; (C): $02643967235675727321400 ;(\mathrm{C}): 05033815193571656620301270$

A.2. HVRPV

Instance N1: 17 routes, cost 2235.87
(A): $0421424315411450 ;(\mathrm{A}): 0105530 ;(\mathrm{A}): 0147890 ;(\mathrm{A}): 055256756730 ;(\mathrm{B}): 058211557$ $144871370 ;(\mathrm{B}): 097100119143814044910 ;(\mathrm{B}): 01811484512583600 ;(\mathrm{B}): 0461244736143$ $496470 ;(\mathrm{C}): 05010233811209103510 ;(\mathrm{C}): 01122201286671651363513534780$; (C):028138 $121508068116761110 ;(\mathrm{C}): 0109541301342429121129793770 ;(\mathrm{D}): 012788148621110719$ $1234882106520 ;(\mathrm{D}): 06611614186113178451180 ;(\mathrm{D}): 014631101081266390321313070$ $10169132270 ;(\mathrm{E}): 040217274221337523391394110149260$; (E):0 1311795923798859359 1049996941120 ;

Instance N2: 24 routes, cost 2864.83 (A): 0112 0; (A): 058152 0; (A): 013211760 ; (A): 01381540 ; (A): 01561470 ; (A): 06911403843 1557 0; (B): 0167127190162270 ; (B): 0981686113178460 0; (B): 01212924163134541950 ; (B): 012663181644914336460 ; (B): 0949597117130 ; (B): 026149180105530 ; (C): 0217274 7523186561971980 ; (C): 018114817445125199831660 ; (C): 015382124471684871941060 ; (C): 0121091771508068116184280 ; (C): 0407317113322411451151782 0; (D): 012220188 66651363513571161103510 ; (D): $0691017030128160131329010818910310 ;$ (D): 0110155 4139187396717025551651301790 ; (D): 052182123191071751115962148881460 ; (E): 089 11851736185935910499961830 ; (E): 0137871441724214214192119441411911931003792 1510 ; (F): 07619677158379129169783416412098118533157102501110 ;

Instance N3: 13 routes, cost 2378.99
(A): 0120119820 ; (A): 01051061071031041020 ; (A): 0677069 0; (A): 08786111880 ; (A): 084 113831171120 ; (B): 09596949711511098116990 ; (B): 09289919011410811818850 ; (B): 0 21262932353634333027312823200 ; (C): 073717472757880797776681010 ; (C): 08121 341115141391050 ; (C): 0678121622242519171090 ; (D): 05355585660636664626165 595754521000 ; (D): 0404345485150494647444142393837930 ;

Instance N5: 11 routes, cost 2047.81
(A):0 80330 ; (A):0 2083858486878990250 ; (A):0 7764637967706968133780 ; (A):0 299394 4543444034142245678910121114881513169228270 ; (A):0 667111846820 ; (B):0 7247 75162525150494834321347674730 ; (B):0 1713111411511913065190 ; (B):0 912126303159 2324220 ; (C):0 6058571059796383995379810099363510110410253103565554610 ; (C):0 181171161061071081091201211220 ; (D):0 811121251111101231241261271281291131320 ;

A.3. FSMF

Instance 20: 19 routes, cost 4032.81
(A): 06880540 (A): 05997950 (A): 041227574210 (A): 0267273400 (A): 0503381510 (A): 085100920 (A): 07737910 (A): 09693940 (A): 04846883600 (A): 052762310 (A): 0995 8417450 (A): 089613580 (A): 069101119880 (A): 0277628530 (A): 0874243155720 (B): 0188247364964639032700 (B): 06116863814449198370 (B): 03020666571359347829 0 (B): 0122455253967235640

A.4. FSMV

Instance N1: 17 routes, cost 2212.77
(A): 01120 ; (A): 0138149260 ; (A): 0531050 ; (A): 0571543381409160 ; (A): 012129242555 1300 ; (B): 0731332241145115258 0; (B): 0181148451258360 0; (B): 076449143364712446 0; (C): 06912220666513635135711035110 ; (D): 077379129783412098133102500 ; (D):

040217274755623673913941100 ; (D): 014631101081266390321311283070101132270 ; (D): 0131179710014144119141424214487137 0; (D): 02812109541348015068116761110 ; (D): 0521068248123191071162148881270 ; (D): 08911858417113861661991040 ; (D): 094 95923798859359961470 ;

Instance N2 : 18 routes, cost 2823.75 (A): 0183130 ; (A): 011791140384315570 ; (A): 015258 0; (A): 01121560 ; (B): 01266318164 491433646 0; (B): 01212924163134541950 ; (C): 010619474816847124821530 ; (C): 011150 102315877196760 ; (C): 01326916231190127167270 ; (D): 0949592151988593591049996 $60 ;(\mathrm{D}): 08916660841711386141166117350$; (D): 01468814862159111751071912318252 0; (D): 01761122301281601313290108101890 ; (D): 0137217811514541221337417173180 1050 ; (D): 013815412109177150806811618428 0; (D): 017913016555251706739187139155 41100 ; (D): 0185791291697834164120981331570 ; (D): 018114817445125199831181470 ; (D): 026149198197561862375722140530 ; (D): 0101702018866651363513571161103510 ; (D): 09737100193191441191921414242172144870 ;

References

Baldacci, R., Christofides, N., \& Mingozzi, A. (2008). An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts. Mathematical Programming, 115, 351-385.

Baldacci, R., \& Mingozzi, A. (2009). A unified exact method for solving different classes of vehicle routing problems. Mathematical Programming, 120, 347-380.

Brandão, J. (2011). A tabu search algorithm for the heterogeneous fixed fleet vehicle routing problem. Computers \mathcal{E} Operations Research, 38, 140-151.

Brandão, J. (2009). A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research, 195, 716-728.

Choi, E., \& Tcha, D.-W. (2007). A column generation approach to the heterogeneous fleet vehicle routing problem. Computers \& Operations Research, 34, 2080-2095.

Dongarra, J. J. (2010). Performance of various computers using standard linear equations software. Technical Report CS-89-85 Computer Science Department, University of Tennessee.

Gendreau, M., Laporte, G., Musaraganyi, C., \& Taillard, E. D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 26, 1153-1173.

Golden, B. L., Assad, A. A., Levy, L., \& Gheysens, F. G. (1984). The feet size and mix vehicle routing problem. Computers \& Operations Research, 11, 49-66.

Hoff, A., Andersson, H., Christiansen, M., Hasle, G., \& Løkketangen, A. (2010). Industrial aspects and literature survey: Fleet composition and routing. Computers \& Operations Research, 37, 2041-2061.

Imran, A., Salhi, S., \& Wassan, N. A. (2009). A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. European Journal of Operational Research, 197, 509-518.

Lee, Y., Kim, J., Kang, K., \& Kim, K. (2008). A heuristic for vehicle fleet mix problem using tabu search and set partitioning. Journal of the Operational Research Society, 59, 833-841.

Li, F., Golden, B., \& Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers \mathfrak{E} Operations Research, 34, 2734-2742.

Li, X., Tian, P., \& Aneja, Y. (2010). An adaptive memory programming metaheuristic for the heterogeneous fixed fleet vehicle routing problem.

Transportation Research Part E: Logistics and Transportation Review, 46, 1111-1127.

Liu, S., Huang, W., \& Ma, H. (2009). An effective genetic algorithm for the fleet size and mix vehicle routing problems. Transportation Research Part E, 45, 434-445.

Lourenço, H. R., Martin, O. C., \& Stützle, T. (2003). Handbook of metaheuristics. chapter Iterated Local Search. (pp. 321-353). Kluwer Academic Publishers.

Mladenovic, N., \& Hansen, P. (1997). Variable neighborhood search. Computers \mathcal{B} Operations Research, 24, 1097-1100.

Ochi, L., Vianna, D., Drummond, L. M. A., \& Victor, A. (1998a). An evolutionary hybrid metaheuristic for solving the vehicle routing problem with heterogeneous fleet. Lecture Notes in Computer Science, 1391, 187195.

Ochi, L., Vianna, D., Drummond, L. M. A., \& Victor, A. (1998b). A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet. Future Generation Computer Systems, 14, 285-292.

Penna, P. H. V., Subramanian, A., \& Ochi, L. S. (2011). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, . To appear.

Pessoa, A., Uchoa, E., \& de Aragão, M. P. (2008). The vehicle routing problem: Latest advances and new challenges. chapter Robust Branch-and-Cut-and-Price Algorithm for Vehicle Routing Problems. (pp. 297-325). Springer.

Pessoa, A., Uchoa, E., \& de Aragão, M. P. (2009). A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks, 54, 167-177.

Prins, C. (2002). Eficient heuristics for the heterogeneous fleet multitrip VRP with application to a large-scale real case. Journal of Mathematical Modelling and Algorithms, 1, 135-150.

Prins, C. (2009). Two memetic algorithms for heterogeneous fleet vehicle routing problems. Engineering Applications of Artificial Intelligence, 22, 916-928.

Renaud, J., \& Boctor, F. (2002). A sweep-based algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research, 140, 618-628.

Rochat, Y., \& Taillard, R. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics, 1, 147-167.

Taillard, E. D. (1999). A heuristic column generation method for heterogeneous fleet. RAIRO (Recherche opeH rationnelle), 33, 1-14.

Tarantilis, C. D., \& Kiranoudis, C. (2002). Boneroute: An adaptive memorybased method for effective fleet management. Annals of Operations Research, 115, 227-241.

Tarantilis, C. D., Kiranoudis, C., \& Vassiliadis, V. (2003). A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Journal of the Operational Research Society, 54, 65-71.

Tarantilis, C. D., Kiranoudis, C. T., \& Vassiliadis, V. S. (2004). A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. European Journal of Operational Research, 152, 148-158.

Yaman, H. (2006). Formulations and valid inequalities for the heterogeneous vehicle routing problem. Mathematical Programming, 106, 3650-390.

[^0]: *Corresponding author: Tel. +55 21 2629-5665; Fax +55 21 2629-5666.
 Email addresses: anand@ct.ufpb.br (Anand Subramanian), ppenna@ic.uff.br (Puca Huachi Vaz Penna), uchoa@producao.uff.br (Eduardo Uchoa), satoru@ic.uff.br (Luiz Satoru Ochi)

[^1]: Table 6: Summary of results for HVRPFV

 | Method | Best Run | | | Average ${ }^{1}$ | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Gap (\%) | BKS Found | BKS Improved | Gap (\%) | Scaled Time (s) |
 | MAMP (Li et al., 2010) | 0.11 | 7 | 0 | 0.22 | 43.25 |
 | ILS-RVND (Penna et al., 2011) | 0.00 | 7 | 0 | 0.29 | 32.89 |
 | ILS-RVND-SP | -0.07 | 7 | 1 | 0.17 | 7.73 |

 ${ }^{1}$: Average of 10 runs for Li et al. (2010) and ILS-RVND-SP and of 30 runs for Penna et al. (2011)

[^2]: ${ }^{1}$: Average of 5 runs for Taillard (1999), of 30 runs for Penna et al. (2011) and of 10 runs for ILS-RVND-SP; ${ }^{2}$: Single Run; ${ }^{3}$: Best Run; ${ }^{4}$: Determistic Algorithm

[^3]: ${ }^{1}$: Average of 10 runs for ILS-RVND-SP; ${ }^{2}$: Determistic Algorithm; ${ }^{a}$: Values in instances H1-H4

[^4]: 1: Average of 5 runs for Choi \& Tcha (2007) and Prins (2009) and of 10 runs for Liu et al. (2009) and ILS-RVND-SP; ${ }^{2}$: Determistic Algorithm.

[^5]: ${ }^{a}$: Optimality proved; ${ }^{b}$: Total time of $10 \mathrm{runs}^{c}{ }^{c}$: Average of $30 \mathrm{runs}^{d}{ }^{d}$: Average of $10 \mathrm{runs} ;{ }^{1}$: Pentium IV 2.6 GHz ($2266 \mathrm{Mflop} / \mathrm{s}$);

