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aUniversidade Federal da Paráıba, Departamento de Engenharia de Produção, Centro de
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Abstract

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem

(HFVRP). The HFVRP generalizes the classical Capacitated Vehicle Routing

Problem by considering the existence of different vehicle types, with distinct

capacities and costs. The objective is to determine the best fleet composition

as well as the set of routes that minimize the total costs. The proposed hybrid

algorithm is composed by an Iterated Local Search (ILS) based heuristic and

a Set Partitioning (SP) formulation. The SP model is solved by means of a

Mixed Integer Programming solver that interactively calls the ILS heuristic

during its execution. The developed algorithm was tested in benchmark in-

stances with up to 360 customers. The results obtained are quite competitive

with those found in the literature and new improved solutions are reported.
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1. Introduction

This paper deals with the Heterogeneous Fleet Vehicle Routing Problem

(HFVRP), which can be defined as follows. Let G = (V,A) be a directed

graph where V = {0, 1, . . . , n} is a set composed by n + 1 vertices and

A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. The vertex 0 denotes

the depot, where the vehicle fleet is located, while the set V ′ = V \ {0} is

composed by the remaining vertices that represents the n customers. Each

customer i ∈ V ′ has a non-negative demand qi. The fleet is composed by m

different types of vehicles, with M = {1, . . . ,m}. For each u ∈M , there are

mu available vehicles, each with a capacity Qu. Every vehicle type is also

associated with a fixed cost denoted by fu. Finally, for each arc (i, j) ∈ A

there are associated costs cuij = dijru, where dij is the distance between the

vertices (i, j) and ru is a type-variable travel cost per distance unit, of a

vehicle of type u. The objective is to determine the best fleet composition as

well as the set of routes that minimize the sum of fixed and travel costs in

such a way that: (i) every route starts and ends at the depot and is associated

to a vehicle type; (ii) each customer belongs to exactly one route; (iii) the

vehicle’s capacity is not exceeded. The HFVRP is NP-hard since it includes

the classical VRP as a special case when all vehicles are identical.

The HFVRP is a very important problem, since fleets are likely to be

heterogeneous in most practical situations. According to Hoff et al. (2010),

even when the acquired fleet is homogeneous, it can become heterogeneous

over the time when vehicles with different characteristics are incorporated.

Moreover, insurance, maintenance and operating costs may have different

values based to the level of depreciation or usage time of the fleet.

We consider the cases where the fleet is limited (Heterogeneous Vehicle

Routing Problem – HVRP) as well as the cases where the fleet is unlim-

ited (Fleet Size and Mix – FSM). More specifically, we tackle the following

variants:

• HVRPFV, limited fleet, with fixed and variable costs;
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• HVRPV, limited fleet, with variable costs but without fixed costs, i.e.,

fu = 0,∀u ∈M ;

• FMSFV, unlimited fleet, i.e.,mu = +∞, ∀u ∈ M , with fixed and vari-

able costs;

• FSMF, unlimited fleet, with fixed costs but without variable costs, i.e.,

ru = 1, ∀u ∈M ;

• FMSV, unlimited fleet, with variable costs but without fixed costs.

In this work, we propose a hybrid algorithm, that is composed by an

Iterated Local Search (ILS) based heuristic and a Set Partitioning (SP) for-

mulation. The SP model is built using routes generated by ILS and it is

solved by means of a Mixed Integer Programming (MIP) solver that interac-

tively calls the ILS heuristic during its execution. This strategy differs from

other approaches that also create solutions out of routes such as those of

Rochat & Taillard (1995) and Tarantilis & Kiranoudis (2002).

The remainder of this paper is organized as follows. Section 2 reviews

some works related to the HFVRP. Section 3 explains the proposed hybrid

algorithm. Section 4 contains the results obtained and a comparison with

those reported in the literature. Section 5 presents the concluding remarks

of this work.

2. Related Works

Since its introduction by Golden et al. (1984), few authors have proposed

exact methods for FSM variants. Yaman (2006) suggested valid inequalities

and presented lower bounds for the FSMF. Choi & Tcha (2007) obtained

lower bounds for all FSM variants by means of a column generation algo-

rithm based on a set covering formulation. Baldacci et al. (2008) proposed

some valid inequalities as well as a two-commodity MIP formulation for the
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same variant. The HFVRP is considered to be much harder than corre-

sponding problems with a homogeneous fleet. At that point, the instances

proposed by Golden et al. (1984) with only 20 customers were not solved

to optimality. Pessoa et al. (2009) (see also Pessoa et al., 2008) proposed

a Branch-Cut-and-Price (BCP) algorithm over an extended formulation ca-

pable of solving instances with up to 75 customers. More recently, Baldacci

& Mingozzi (2009) put forward a SP based algorithm that uses bounding

procedures based on linear relaxation and lagrangian relaxation. That algo-

rithm obtained even better results and could solve a few instances with 100

customers. Nevertheless, such exact algorithms can be very time-consuming

and are not suitable for larger instances. On the other hand, there is a rich

literature on heuristic methods for the HFVRP.

Many metaheuristic based approaches were proposed for the FSM over

the years. Ochi et al. (1998a) proposed a hybrid evolutionary procedure

that combines Scatter Search with Genetic Algorithm (GA) to solve the

FSMF. A parallel implementation of the same algorithm was presented by

Ochi et al. (1998b). Gendreau et al. (1999) developed a heuristic algorithm

that combines Tabu Search (TS), adaptive memory and a GENIUS approach.

Renaud & Boctor (2002) proposed a sweep-based heuristic for the FSMF

that employs traditional construction and improvement VRP procedures.

Lee et al. (2008) proposed a hybrid algorithm that combines TS and SP.

Brandão (2009) put forward a deterministic TS with different procedures for

generating initial solutions. A hybrid GA that employs local search as a

mutation approach was developed by Liu et al. (2009) to solve the FSMF

and the FMSV. Two Memetic Algorithms were developed by Prins (2009)

to solve all FSM variants and the HVRPV. Imran et al. (2009) developed a

Variable Neighborhood Search (VNS) algorithm that makes use of classical

algorithms for generating initial solutions. All FSM variants were considered

by the authors. Finally, Penna et al. (2011) proposed an ILS based heuristic

for solving the same FSM and HVRP variants considered in the present work.
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The HVRP was proposed by Taillard (1999). The author developed an

algorithm based on TS, adaptive memory and column generation which was

also applied to solve the FSM. Prins (2002) dealt with the HVRP by develop-

ing an algorithm that extends a number of VRP classical heuristics followed

by a local search procedure based on the Steepest Descent Local Search and

TS. Tarantilis et al. (2003) solved the HVRPV by implementing a threshold

accepting procedure where a worse solution is only accepted if it is within a

given threshold. The same authors (Tarantilis et al., 2004) later presented

another threshold accepting procedure to solve the same problem. Li et al.

(2007) put forward a record-to-record travel algorithm for the HVRPV. Li

et al. (2010) proposed a multi-start adaptive memory procedure combined

with Path Relinking and a modified TS to solve the HVRPFV. More recently,

Brandão (2011) proposed a TS algorithm for the HVRP which includes ad-

ditional features such as strategic oscillation, shaking and frequency-based

memory.

3. The ILS-RVND-SP Algorithm

The proposed hybrid algorithm, called ILS-RVND-SP, is composed by an

ILS (Lourenço et al., 2003) heuristic, that uses a procedure based on the

Variable Neighborhood Descent (Mladenovic & Hansen, 1997) with Random

neighborhood ordering (RVND) in the local search phase, and a SP formu-

lation.

Let R be the set of all possible routes of all vehicle types, Ri ⊆ R be

the subset of routes that contain customer i ∈ V ′, and Ru ⊆ R be the set of

routes associated with vehicle type u ∈ M . Define yj as the binary variable

associated to a route j ∈ R, and cj as its cost. The SP formulation for the

HVRP can be expressed as follows.

Min
∑
j∈R

cjyj (1)
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subject to ∑
j∈Ri

yj = 1 ∀i ∈ V ′ (2)∑
j∈Ru

yj ≤ mu ∀u ∈M (3)

yj ∈ {0, 1}. (4)

The objective function (1) minimizes the sum of the costs by choosing the

best combination of routes. Constraints (2) state that a single route from

the subset Ri visits costumer i ∈ V ′. Constraints (3) are limits on the fleet

composition. Constraints (4) define the domain of the decision variables.

Since this complete formulation has an exponential number of variables, it

can not be directly solved. Solving it by branch-and-price or related meth-

ods, as done in some proposed exact algorithms, is time-consuming and only

practical up to a certain instance size. The ILS-RVND-SP algorithm actually

solves a SP problem similar to (1–4), whereR is restricted to a few thousands

routes generated by the ILS-RVND heuristic.

In the case of FSM, we drop constraints (3) because there is no upper

bound on the number of vehicles of each type. In addition, when the reso-

lution of the restricted SP by a MIP solver exceeds the time limit imposed

or the gap between the linear relaxation of the root node and the incumbent

solution s∗ is larger than a given limit (this usually happens when fixed costs

are considered), the algorithm enforces the fleet composition to be equal to

the one used by s∗ . Let m∗
u be the number of vehicles of type u used in s∗.

The vehicle fleet can be fixed by adding the following constraints:∑
j∈Ru

yj = m∗
u ∀u ∈M. (5)

Of course, this limits the improvements that can be made by solving the SP

problem but it makes the problem much more computationally tractable in
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an acceptable time.

Alg. 1 describes the higher-level ILS-RVND-SP algorithm. At first, an

empty pool of routes is initialized (line 2). Next, a solution s∗ is generated

using the ILS-RVND heuristic (see Subsection 3.1), which also fills the pool

with the routes in every local optimal solution visited (line 3). The variable

Cutoff is initialized with the Upper Bound (UB) value associated to s∗ (line

4). The SP model, given by expressions (1)-(4), is build using the pool of

routes (line 5). The SP problem and s∗ are given to a MIP solver (line 6)

which calls the ILS-RVND heuristic whenever an incumbent solution is found

(Procedure IncumbentCallback, lines 14-21). If the solution s∗ is improved in

the IncumbentCallback, the Cutoff value is updated (line 19), but s∗ is not

given back to the solver since it may contain a route that does not belong

to the set of routes R of the SP model. We assume that the MIP solver

uses a Branch-and-bound or a Branch-and-cut solution procedure. The MIP

solver stopping criteria are: (i) optimal solution found; (ii) LB > Cutoff ;

(iii) RootGap > MaxRootGap, where RootGap is the gap between the LB

and the UB after solving the root node and MaxRootGap is the maximum

RootGap allowed; (iv) Time > TimeMax, where Time is the execution

time of the solver and TimeMax is a time limit imposed for the solver. If

the solver has been interrupt due to (iii) or (iv) and the fleet is unlimited,

then the SP model is updated by adding constraints (5), MaxRootGap is set

to infinity and the solver is called again with the same stopping criteria.

3.1. The ILS-RVND heuristic

The ILS-RVND heuristic is based on the one developed by Penna et al.

(2011) for the HFVRP and its steps are summarized in the Alg. 2. The

heuristic executes MaxIter iterations and it returns the best solution s∗

among all iterations. (lines 2-26). The parameter MaxIterILS represents

the maximum number of consecutive perturbations allowed without improve-

ments. If an starting solution s0 is not provided, a constructive proce-

dure is applied for generating an initial solution (line 4) and the value of
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Algorithm 1 ILS-RVND-SP
1: Procedure ILS-RVND-SP(MaxIter, MaxTime, MaxRootGap)
2: RoutePool← NULL

3: s∗ ← ILS-RVND(MaxIter, NULL, RoutePool)
4: Cutoff ← f(s∗)
5: SP model← CreateSetPartitioningModel(RoutePool)
6: MIPSolver(SP Model, s∗, Cutoff,MaxRootGap,MaxTime, IncumbentCallback(s∗))
7: if ((Time > MaxTime or RootGap > MaxRootGap) and (unlimited fleet)) then
8: Update SP model {Fixing the fleet}
9: MaxRootGap←∞
10: MIPSolver(SP Model, s∗, Cutoff,MaxRootGap,MaxT ime, IncumbentCallback(s∗))
11: end if
12: return s∗

13: end ILS-RVND-SP
14: Procedure IncumbentCallback(s∗)
15: s← Incumbent Solution
16: s← ILS-RVND(1, s, NULL)
17: if f(s) < f(s∗) then
18: s∗ ← s
19: Cutoff ← f(s)
20: end if
21: end IncumbentCallback

MaxIterILS is set to n+ v, where v is the number of vehicles of the gener-

ated solution (lines 3-5). This expression was empirically formulated accord-

ing to preliminary experiments when it was observed that the appropriate

number of perturbations was directly proportional to n and v. In contrast,

if a solution s0 is provided, then MaxIterILS is set to 1000 (lines 6-9). We

assume that s0 is a relatively good solution and, in view of this, much more

trials has to be given for the algorithm to possibly improve it. It is important

to mention that we have dealt with instances with up to 360 customers and

hence n+v < 1000. The main ILS loop (lines 11-20) aims to improve the gen-

erated initial solution using a RVND procedure (line 12) in the local search

phase combined with a set of perturbation mechanisms (line 18). Notice that

the perturbation is always performed on the best current solution (s′) of a

given iteration (acceptance criterion). The ILS-RVND original structure was

slightly modified in order to store routes during its execution. Every time
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a local search is performed, the pool of routes is updated by only adding

routes that still have not been included in the pool (lines 13). This updating

is ignored when ILS-RVND is called during the IncumbentCallback.

Algorithm 2 ILS-RVND
1: Procedure ILS-RVND(MaxIter, s0, RoutePool)
2: for i← 1, . . . ,MaxIter do
3: if s0 = NULL then
4: s← GenerateInitialSolution(v, seed)
5: MaxIterILS ← n+ v
6: else
7: s← s0
8: MaxIterILS ← 1000
9: end if
10: iterILS ← 0
11: while iterILS ≤MaxIterILS do
12: s′ ← RVND(s)
13: UpdateRoutePool(RoutePool, s′)
14: if f(s) < f(s′) then
15: s′ ← s
16: iterILS ← 0
17: end if
18: s← Perturb(s′, seed)
19: iterILS ← iterILS + 1
20: end while
21: if f(s′) < f∗ then
22: s∗ ← s′

23: f∗ ← f(s′)
24: end if
25: end for
26: return s∗

27: end ILS-RVND

3.1.1. Constructive Procedure

The constructive procedure works as follows. For the HVRP, we first

initialize empty routes associated to each available vehicle. For the FSM, we

first initialize one empty route per vehicle type and whenever it is necessary

(i.e., when it is no longer possible to add unrouted customers to the current

partial solution), we add an empty route associated to a random vehicle type.
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Let the Candidate List (CL) be initially composed by all customers. Each

route is initially filled with a seed customer k, randomly selected from the

CL. An insertion criterion and an insertion strategy is chosen at random. An

initial solution is generated using the selected combination of criterion and

strategy. If the fleet is unlimited (FSM), an empty route associated to each

type of vehicle is added to the constructed solution s. These empty routes

are necessary to allow a possible fleet resizing during the local search phase.

Two insertion criteria were adopted: the Modified Cheapest Feasible In-

sertion Criterion (MCFIC) and the Nearest Feasible Insertion Criterion. The

first consists of a modification of the well-known Cheapest Insertion Criterion

by allowing only feasible insertions and also by including an insertion incen-

tive for those customers located far from the depot. The second consists of

of an adaptation of the classical Nearest Insertion Criterion by only allowing

feasible insertions.

Two insertion strategies were employed, specifically the Sequential Inser-

tion Strategy (SIS) and the Parallel Insertion Strategy (PIS). In SIS, while

there is at least one unrouted customer that can be added to the current

partial solution, each route is filled with a customer selected using the corre-

spondent insertion criterion, whereas in PIS all routes are considered while

evaluating the least-cost insertion. We refer to Penna et al. (2011) for a more

detailed description of the constructive procedure.

3.1.2. Local Search

The local search is performed by a VND (Mladenovic & Hansen, 1997)

procedure which utilizes a random neighborhood ordering (RVND). Firstly,

a Neighborhood List (NL) containing a predefined number of inter-route

moves is initialized. While NL is not empty, a neighborhood N (η) ∈ NL is

chosen at random and then the best admissible move is determined. In case

of improvement, an intra-route local search is performed on the modified

routes. For the FSM, the fleet is updated and the NL is populated with

all the neighborhoods. Otherwise, N (η) is removed from the NL. The fleet
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updating assures that there is exactly one empty vehicle of each type.

Let N ′ be a set composed by r′ intra-route neighborhood structures. The

intra-route local search is as follows. At first, a neighborhood list NL′ is

initialized with all the intra-route neighborhood structures. Next, while NL′

is not empty a neighborhood N ′(η) ∈ NL′ is randomly selected and a local

search is exhaustively performed until no more improvements are found.

3.1.3. Inter-Route Neighborhood structures

Seven VRP neighborhood structures involving inter-route moves were em-

ployed and they are described next. The inter-route neighborhood structures

are described next. Shift(1,0), a customer k is transferred from a route r1

to a route r2. Swap(1,1), permutation between a customer k from a route

r1 and a customer l, from a route r2. Shift(2,0), two adjacent customers,

k and l, are transferred from a route r1 to a route r2. This move can also

be seen as an arc transferring. In this case, the move examines the transfer-

ring of both arcs (k, l) and (l, k). Swap(2,1), permutation of two adjacent

customers, k and l, from a route r1 by a customer k′ from a route r2. As in

Shift(2,1), both arcs (k, l) and (l, k) are considered. Swap(2,2), permuta-

tion between two adjacent customers, k and l, from a route r1 by another two

adjacent customers k′ and l′, belonging to a route r2. All the four possible

combinations of exchanging arcs (k, l) and (k′, l′) are considered. Cross, the

arc between adjacent clients k and l, belonging to a route r1, and the one

between k′ and l′, from a route r2, are both removed. Next, an arc is inserted

connecting k and l′ and another is inserted connecting k′ and l. K-Shift, a

subset of consecutive customers K is transferred from a route r1 to the end

of a route r2. In this case, it is assumed that the variable and fixed costs of

r2 is smaller than those of r1. It should be pointed out that the move is also

taken into account when r2 is an empty route.

The solution spaces of the seven neighborhoods are explored exhaustively,

that is, all possible combinations are examined, and the best improvement

strategy is considered. The computational complexity of each one of these
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moves is O(n2). Only feasible moves are admitted, i.e., those that do not

violate the maximum load constraints. Therefore, every time an improvement

occurs, the algorithm checks whether this new solution is feasible or not. This

checking is trivial and it can be performed in a constant time by just verifying

if the sum of the customers demands of a given route does not exceed the

vehicle’s capacity at the depot.

3.1.4. Intra-Route Neighborhood structures

Five well-known intra-route neighborhood structures were adopted. The

set N ′ is composed by Or-opt, 2-opt and exchange moves. The computa-

tional complexity of these neighborhoods is O(n̄2), where n̄ is the number

of customers of the modified routes. Their description is as follows. Rein-

sertion, one customer is removed and inserted in another position of the

route. Or-opt2, two adjacent customers are removed and inserted in an-

other position of the route. Or-opt3, three adjacent customers are removed

and inserted in another position of the route. 2-opt, two nonadjacent arcs

are deleted and another two are added in such a way that a new route is

generated. Exchange, permutation between two customers.

3.2. Perturbation Mechanisms

A set P of three perturbation mechanisms were adopted. Whenever the

Perturb() function is called, one of the moves described below is randomly

selected. Multiple-Swap(1,1), P (1), multiple Swap(1,1) moves are per-

formed randomly. After some preliminary experiments, the number of suc-

cessive moves was empirically set to 0.5v. Multiple-Shift(1,1), P (2), mul-

tiple Shift(1,1) moves are performed randomly. The Shift(1,1) consists in

transferring a customer k from a route r1 to a route r2, whereas a customer

l from r2 is transferred to r1. In this case, the number of moves is randomly

selected from the interval {0.5v, 0.6v, . . . , 1.4v, 1.5v}. Split, P (3), a route r is

divided into smaller routes. Let M ′ = {2, . . . ,m} be a subset of M composed

by all vehicle types, except the one with the smallest capacity. Firstly, a route
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r ∈ s (let s = s′) associated with a vehicle u ∈ M ′ is selected at random.

Next, while r is not empty, the remaining customers of r are sequentially

transferred to a new randomly selected route r′ /∈ s associated with a vehicle

u′ ∈ {1, . . . , u − 1} in such a way that the capacity of u′ is not violated.

The new generated routes are added to the solution s while the route r is

removed from s. The procedure described is repeated multiple times where

the number of repetitions is chosen at random from the interval {1, 2, ..., v}.
This perturbation was applied only for the FSM, since it does not make sense

for the HVRP. Only feasible perturbations moves are accepted.

4. Computational Results

The algorithm ILS-RVND-SP was coded in C++ (g++ 4.4.3) and exe-

cuted in an Intel Core i7 Processor 2.93 GHz with 8 GB of RAM running

Ubuntu Linux 10.04 (kernel version 2.6.32). The SP formulation was imple-

mented using the solver CPLEX 12.2. The developed approach was tested

in well-known instances, containing up to 100 customers, namely those pro-

posed by Golden et al. (1984) and adapted by Taillard (1999) and Choi &

Tcha (2007). Table 1 describes the characteristics of these instances. We

also tested ILS-RVND-SP in the instances of Brandão (2011), containing up

to 199 customers, and Li et al. (2007), containing up to 360 customers. Their

description can be found in Tables 2 and 3, respectively.

The following parameters values were selected after some preliminary

experiments: MaxIter = 30, MaxTime = 30 seconds, MaxRootGap =

0.02. For all five HFVRP variants, each instance was executed 10 times and

the results are presented in Subsections 4.2-4.6. A comparison is performed

with the best known algorithms reported in the literature.

In the tables presented hereafter, Inst. denotes the number of the test-

problem, n is the number of customers, BKS represents the best known

solution reported in the literature, Best Sol. and Time indicate, respec-

tively, the best solution and the average computational time associated to
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the correspondent work, Avg. Sol. represents the average solution of the 10

runs, Gap denotes the gap between the best solution found by ILS-RVND-

SP and the best known solution, Avg. Gap corresponds to the gap between

the average solution found by ILS-RVND-SP and the best known solution.

Scaled time indicates the scaled time in seconds of each computer using

the performances, in Mflop/s, of computers listed in Dongarra (2010) for our

2.93 GHz. The best solutions are highlighted in boldface and the solutions

improved by the ILS-RVND-SP algorithm are underlined.

4.1. Evaluating the performance of each phase of ILS-RVND-SP

In this subsection we are interested in evaluating the performance of each

phase of ILS-RVND-SP, i.e., ILS-RVND and SP. Table 4 illustrates the influ-

ence, in terms of computing time and solution cost, of both phases in the final

solution on each set of instances. It can be observed that phase 2 is always

capable of substantially improving the solutions found in the first phase. It

is noteworthy to mention that the number of perturbations without improve-

ments of phase 1 is considerably smaller from those adopted in Penna et al.

(2011), leading to a faster procedure but less effective in terms of solution

quality. Nevertheless, when including phase 2, ILS-RVND-SP not only finds

better average solutions but still outperforms the ILS-RVND presented in

Penna et al. (2011) in terms of computational time, as it will be shown in

the following subsections.

4.2. HVRPFV

Baldacci & Mingozzi (2009), Li et al. (2010) and Penna et al. (2011) were,

to our knowledge, the only authors that dealt with the HVRPFV instances

considered in this work. By observing the results presented in Table 5, it can

be noted that the ILS-RVND-SP was found capable to improve the result

of one instance and to equal the BKS of the remaining ones. The average

gap between the Avg. Sols. obtained by ILS-RVND-SP and the BKSs was

0.14%.
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4.3. HVRPV

Tables 7-8 present a comparison between the results obtained by the ILS-

RVND-SP and the best heuristics proposed in the literature, namely those

of Taillard (1999), Li et al. (2007), Prins (2009) and Penna et al. (2011),

in the set of instances of Taillard (1999). All proven optimal solutions were

found by the proposed algorithm and in the only instance where the opti-

mal solution is not known, the ILS-RVND-SP, as well as the algorithm of

Li et al. (2007), Prins (2009) and Penna et al. (2011), failed to obtain the

best solution reported by Taillard (1999). The average gap between the Avg.

Sols. found by ILS-RVND-SP and the BKSs was 0.16% and the average

computational time was 3.61 seconds. In the set of instances proposed by

Brandão (2011), ILS-RVND-SP outperformed the TS algorithm of same au-

thor in terms of solution quality, with an average gap of 0.09%, as can be

observed in Tables 9-10. Finally, in the large size concentric instances of Li

et al. (2007), ILS-RVND-SP did not perform as good as the other approaches

from the literature and the average gap was 2.33% (see Tables 11-12). De-

spite the poor performance of the proposed algorithm in 3 test-problems of

this last particular benchmark, we strongly believe that instances with such

geographical distribution are seldom found in practice.

4.4. FMSFV

In Tables 13-14 a comparison is performed between the results found by

the ILS-RVND-SP and the best heuristics available in the literature, partic-

ularly the ones of Choi & Tcha (2007), Prins (2009), Imran et al. (2009) and

Penna et al. (2011). The ILS-RVND-SP was found capable to improve one

solution and to equal the result of the remaining ones, outperforming the

other algorithms in terms of number of best solutions found. The average

gap between the Avg. Sols. found by ILS-RVND-SP and the BKSs was

0.02%. Moreover, the average computational time was quite similar to the

one reported by Prins (2009), i.e., between 6 and 7 seconds.
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Table 3: HFVRP Instances of Li et al. (2007)

Inst. n A B C D E F

QA vA nA QB vB nB QC vC nC QD vD nD QE vE nE QF vF nF

H1 200 50 1 8 100 1.1 6 200 1.2 4 500 1.7 3 1000 2.5 1

H2a 240 50 1 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 1

H3 280 50 1 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 2

H4 320 50 1 10 100 1.1 8 200 1.2 5 500 1.7 2 1000 2.5 2 1500 3 1

H5a 360 50 1 10 100 1.2 8 200 1.5 5 500 1.8 1 1500 2.5 2 2000 3 1

a: Using the values presented in Brandão (2011) (see Brandão (2011), p. 146 for more details).

4.5. FSMF

Tables 15-16 illustrate the results obtained by the ILS-RVND-SP for

the FSMF. These results are compared with those of Choi & Tcha (2007),

Brandão (2009), Prins (2009), Liu et al. (2009) and Penna et al. (2011). It

can be seen that the proposed algorithm equaled the results of all instances,

with the exception of instance 20, where a new improved solution was found.

Once again the ILS-RVND-SP outperformed the algorithms proposed in the

literature in terms of best solutions obtained. The average gap between the

Avg. Sols. found by ILS-RVND-SP and the BKSs was 0.08%. Furthermore,

it can be seen that the average computational time of our algorithm was

smaller than those of the literature.

4.6. FMSV

The best results obtained in the literature for the FMSV using heuristic

approaches were reported by Choi & Tcha (2007), Brandão (2009), Prins

(2009), Imran et al. (2009) and Penna et al. (2011). These results along with

those found by the ILS-RVND-SP are presented in Tables 17–18. In this

variant, the optimal solutions of all instances were proven in the literature.

From Table 17, it can be observed that the ILS-RVND-SP was capable of

finding all optimal solutions and the average gap between the Avg. Sols.

produced by the ILS-RVND-SP and the BKSs was 0.06%. One can also

verify that our algorithm presented the best performance in terms of best

solutions and average computational time. Brandão (2011) presented results

17



Table 4: Performance evaluation of each phase of ILS-RVND-SP

Phase 1 (ILS-RVND) Phase 2 (SP)
Variant

Avg. Gap Time Avg. Gap Time
Avg. Number of

(Benchmark set)
(%) (s) (%) (s)

Routes (columns)

HVRPFV (Taillard, 1999) 0.86 2.38 0.17 5.35 4031

HVRPV (Taillard, 1999) 1.09 2.42 0.18 1.61 4110

HVRPV (Brandão, 2011) 0.89 20.09 0.05 33.50 15079

HVRPV (Li et al., 2007) 2.37 247.68 2.15 55.09 61345

FSMFV (Taillard, 1999) 1.02 1.73 0.01 5.83 2190

FSMF (Golden et al., 1984) 1.44 2.18 0.11 6.91 3338

FSMV (Taillard, 1999) 0.85 2.15 0.12 1.17 3596

FMSV (Brandão, 2011) 2.63 23.26 0.15 17.45 17942

Average 1.39 37.74 0.37 15.86 13954

for the FSMV by running the TS algorithm proposed in Brandão (2009) in

the instances proposed by the same author. We compare such results with

those found by ILS-RVND-SP in Tables 19-20, where it can be seen that

ILS-RVND-SP was capable to improve the result of 2 instances and to equal

the solution cost of the remaining ones.

5. Concluding Remarks

This article dealt with Heterogeneous Fleet Vehicle Routing Problem

(HFVRP). This kind of problem often arises in practical applications and

one can affirm that this model is more realistic than the classical homo-

geneous Vehicle Routing Problem. Five HFVRP variants involving limited

and unlimited fleet with fixed and/or variable costs were considered. These

variants were solved by a hybrid algorithm based on the Iterated Local (ILS)

Search metaheuristic, that uses Variable Neighborhood Descent with random

neighborhood ordering (RVND) in the local search phase, combined with a

Set Partitioning Formulation.

The proposed hybrid algorithm (ILS-RVND-SP) was tested in 67 bench-

mark instances with up to 360 customers and it was found capable to obtain

8 new improved solutions, to equal the result of 54 instances and failed to

obtain the best known solution of only 5 instances.
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Table 9: Results for HVRPV on the instances of Brandão (2011)

TSA ILS-RVND-SP

Brandão

Inst. n BKS Best Time1 Best Gap Avg. Timea Gapa

Sol. (s) Sol. (%) Sol.a (s) (%)

N1 150 2243.76 2243.76 – 2235.87 -0.35 2244.31 51.50 0.02

N2 199 2874.13 2874.13 – 2864.83 -0.32 2906.24 102.77 1.12

N3 120 2386.90 2386.90 – 2378.99 -0.33 2382.10 51.71 -0.20

N4 100 1839.22 1839.22 – 1839.22 0.00 1839.22 9.64 0.00

N5 134 2062.48 2062.48 – 2047.81 -0.71 2047.81 52.33 -0.71

a: Average of 10 runs; 1: Pentium IV 2.6 GHz (2266 Mflop/s)

Table 10: Summary of results for HVRPV on the instances of Brandão (2011)

Method Best Run Average1

Gap (%) BKS Found BKS Improved Gap (%) Scaled Time

TSA (Brandão, 2011) 0.00 5 0 – –

ILS-RVND-SP -0.34 1 4 0.05 53.59

1: Average of 10 runs for ILS-RVND-SP.

Table 11: Results for HVRPV on the instances of Li et al. (2007)

HRTR TSA ILS-RVND-SP

Li et al. Brandão

Inst. n BKS Best Time1 Best Time2 Best Gap Avg. Timeb Gapb

Sol. (s) Sol. (s) Sol. (%) Sol.b (s) (%)

H1 200 12050.08 12067.65 687.82 12050.08 1395 12050.08 0.00 12052.69 72.10 0.02

H2 240 10208.32a 10234.40 995.27 10226.17 3650 10329.15 1.18 10436.20 176.43 2.23

H3 280 16223.39a 16231.80 1437.56 16230.21 2822 16282.41 0.36 16526.89 259.61 1.87

H4 320 17458.65 17576.10 2256.35 17458.65 8734 17743.68 1.63 18022.37 384.52 3.23

H5 360 23166.56a – – 23220.72 13321 23493.87 1.41 23948.97 621.17 3.38

a: Found by Brandão (2011) using TSA with a different calibration; b: Average of 10 runs;

1: AMD Athlon 1.0 GHz (1168 Mflop/s); 2: Pentium IV 2.6 GHz (2266 Mflop/s)

Table 12: Summary of results for HVRPV on the instances of Li et al. (2007)

Method Best Run Average1

Gap (%) BKS Found BKS Improved Gap (%) Scaled Time

HRTR (Li et al., 2007) 0.28a 0 0 – 346.222

TSA (Brandão, 2011) 0.09 (0.05)a 2 0 – 1246.282

ILS-RVND-SP 0.92 (0.80)a 1 0 2.15 (1.84)a 302.77

1: Average of 10 runs for ILS-RVND-SP; 2: Determistic Algorithm; a: Values in instances H1-H4
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Table 19: Results for FMSV on the instances of Brandão (2011)

TSA ILS-RVND-SP

Brandão

Inst. n BKS Best Time1 Best Gap Avg. Timea Gapa

Sol. (s) Sol. (%) Sol.a (s) (%)

N1 150 2220.01 2220.01 – 2212.77 -0.33 2219.66 39.60 -0.02

N2 199 2827.76 2827.76 – 2823.75 -0.14 2844.96 106.97 0.61

N3 120 2234.57 2234.57 – 2234.57 0.00 2234.85 19.27 0.01

N4 100 1822.78 1822.78 – 1822.78 0.00 1823.07 8.38 0.02

N5 134 2016.79 2016.79 – 2016.79 0.00 2019.26 29.35 0.12

a: Average of 10 runs; 1: Pentium IV 2.6 GHz (2266 Mflop/s)

Table 20: Summary of results for FMSV on the instances of Brandão (2011)

Method Best Run Average1

Gap BKS Found BKS Improved Gap Scaled Time

TSA (Brandão, 2009)a 0.00 5 0 – –

ILS-RVND-SP -0.09 3 2 0.15 40.71

1: Average of 10 runs for ILS-RVND-SP; a: Presented in Brandão (2011) using TSA version of Brandão (2009)

A. New best solutions

A.1. HVRPFV

Instance 20: 12 routes, cost 4761.26

(A): 0 18 83 8 45 17 84 60 0; (A): 0 74 22 41 15 43 57 2 0; (A): 0 91 44 38 14 42 0; (A): 0 92 37 100 98 99

96 6 0; (A): 0 70 78 34 29 24 25 55 54 0; (B): 0 12 80 68 79 3 77 76 28 0; (B): 0 52 7 48 19 11 62 88 31 69

0; (B): 0 94 95 97 87 13 58 53 0; (B): 0 10 32 90 63 64 49 36 47 46 82 0; (C): 0 89 5 61 86 16 85 93 59 0;

(C): 0 26 4 39 67 23 56 75 72 73 21 40 0; (C): 0 50 33 81 51 9 35 71 65 66 20 30 1 27 0

A.2. HVRPV

Instance N1: 17 routes, cost 2235.87

(A): 0 42 142 43 15 41 145 0; (A): 0 105 53 0; (A): 0 147 89 0; (A):0 55 25 67 56 73 0; (B): 0 58 2 115 57

144 87 137 0; (B):0 97 100 119 14 38 140 44 91 0; (B):0 18 114 8 45 125 83 60 0; (B):0 46 124 47 36 143

49 64 7 0; (C):0 50 102 33 81 120 9 103 51 0; (C):0 1 122 20 128 66 71 65 136 35 135 34 78 0; (C):0 28 138

12 150 80 68 116 76 111 0; (C):0 109 54 130 134 24 29 121 129 79 3 77 0; (D):0 127 88 148 62 11 107 19

123 48 82 106 52 0; (D):0 6 61 16 141 86 113 17 84 5 118 0; (D):0 146 31 10 108 126 63 90 32 131 30 70

101 69 132 27 0; (E):0 40 21 72 74 22 133 75 23 39 139 4 110 149 26 0; (E):0 13 117 95 92 37 98 85 93 59

104 99 96 94 112 0;
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Instance N2: 24 routes, cost 2864.83

(A): 0 112 0; (A): 0 58 152 0; (A): 0 132 1 176 0; (A): 0 138 154 0; (A): 0 156 147 0; (A): 0 6 91 140 38 43

15 57 0; (B): 0 167 127 190 162 27 0; (B): 0 98 16 86 113 17 84 60 0; (B): 0 121 29 24 163 134 54 195 0;

(B): 0 126 63 181 64 49 143 36 46 0; (B): 0 94 95 97 117 13 0; (B): 0 26 149 180 105 53 0; (C): 0 21 72 74

75 23 186 56 197 198 0; (C): 0 18 114 8 174 45 125 199 83 166 0; (C): 0 153 82 124 47 168 48 7 194 106 0;

(C): 0 12 109 177 150 80 68 116 184 28 0; (C): 0 40 73 171 133 22 41 145 115 178 2 0; (D): 0 122 20 188

66 65 136 35 135 71 161 103 51 0; (D): 0 69 101 70 30 128 160 131 32 90 108 189 10 31 0; (D): 0 110 155

4 139 187 39 67 170 25 55 165 130 179 0; (D): 0 52 182 123 19 107 175 11 159 62 148 88 146 0; (E): 0 89

118 5 173 61 85 93 59 104 99 96 183 0; (E): 0 137 87 144 172 42 142 14 192 119 44 141 191 193 100 37 92

151 0; (F): 0 76 196 77 158 3 79 129 169 78 34 164 120 9 81 185 33 157 102 50 111 0;

Instance N3: 13 routes, cost 2378.99

(A): 0 120 119 82 0; (A): 0 105 106 107 103 104 102 0; (A): 0 67 70 69 0; (A): 0 87 86 111 88 0; (A): 0 84

113 83 117 112 0; (B): 0 95 96 94 97 115 110 98 116 99 0; (B): 0 92 89 91 90 114 108 118 18 85 0; (B): 0

21 26 29 32 35 36 34 33 30 27 31 28 23 20 0; (C): 0 73 71 74 72 75 78 80 79 77 76 68 101 0; (C): 0 81 2 1

3 4 11 15 14 13 9 10 5 0; (C): 0 6 7 8 12 16 22 24 25 19 17 109 0; (D): 0 53 55 58 56 60 63 66 64 62 61 65

59 57 54 52 100 0; (D): 0 40 43 45 48 51 50 49 46 47 44 41 42 39 38 37 93 0;

Instance N5: 11 routes, cost 2047.81

(A):0 80 33 0; (A):0 20 83 85 84 86 87 89 90 25 0; (A):0 77 64 63 79 67 70 69 68 133 78 0; (A):0 29 93 94

45 43 44 40 3 41 42 2 4 5 6 7 8 9 10 12 11 14 88 15 13 16 92 28 27 0; (A):0 66 71 118 46 82 0; (B):0 72 47

75 1 62 52 51 50 49 48 34 32 134 76 74 73 0; (B):0 17 131 114 115 119 130 65 19 0; (B):0 91 21 26 30 31 59

23 24 22 0; (C):0 60 58 57 105 97 96 38 39 95 37 98 100 99 36 35 101 104 102 53 103 56 55 54 61 0; (C):0

18 117 116 106 107 108 109 120 121 122 0; (D):0 81 112 125 111 110 123 124 126 127 128 129 113 132 0;

A.3. FSMF

Instance 20: 19 routes, cost 4032.81

(A): 0 68 80 54 0 (A): 0 59 97 95 0 (A): 0 41 22 75 74 21 0 (A): 0 26 72 73 40 0 (A): 0 50 33 81 51 0 (A):

0 85 100 92 0 (A): 0 77 3 79 1 0 (A): 0 96 93 94 0 (A): 0 48 46 8 83 60 0 (A): 0 52 7 62 31 0 (A): 0 99 5

84 17 45 0 (A): 0 89 6 13 58 0 (A): 0 69 10 11 19 88 0 (A): 0 27 76 28 53 0 (A): 0 87 42 43 15 57 2 0 (B):

0 18 82 47 36 49 64 63 90 32 70 0 (B): 0 61 16 86 38 14 44 91 98 37 0 (B): 0 30 20 66 65 71 35 9 34 78 29

0 (B): 0 12 24 55 25 39 67 23 56 4 0

A.4. FSMV

Instance N1: 17 routes, cost 2212.77

(A): 0 112 0; (A): 0 138 149 26 0; (A): 0 53 105 0; (A): 0 57 15 43 38 140 91 6 0; (A): 0 121 29 24 25 55

130 0; (B): 0 73 133 22 41 145 115 2 58 0; (B): 0 18 114 8 45 125 83 60 0; (B): 0 7 64 49 143 36 47 124 46

0; (C): 0 69 122 20 66 65 136 35 135 71 103 51 1 0; (D): 0 77 3 79 129 78 34 120 9 81 33 102 50 0; (D):

26



0 40 21 72 74 75 56 23 67 39 139 4 110 0; (D): 0 146 31 10 108 126 63 90 32 131 128 30 70 101 132 27 0;

(D): 0 13 117 97 100 141 44 119 14 142 42 144 87 137 0; (D): 0 28 12 109 54 134 80 150 68 116 76 111 0;

(D): 0 52 106 82 48 123 19 107 11 62 148 88 127 0; (D): 0 89 118 5 84 17 113 86 16 61 99 104 0; (D): 0 94

95 92 37 98 85 93 59 96 147 0;

Instance N2 : 18 routes, cost 2823.75

(A): 0 183 13 0; (A): 0 117 91 140 38 43 15 57 0; (A): 0 152 58 0; (A): 0 112 156 0; (B): 0 126 63 181 64

49 143 36 46 0; (B): 0 121 29 24 163 134 54 195 0; (C): 0 106 194 7 48 168 47 124 82 153 0; (C): 0 111 50

102 3 158 77 196 76 0; (C): 0 132 69 162 31 190 127 167 27 0; (D): 0 94 95 92 151 98 85 93 59 104 99 96

6 0; (D): 0 89 166 60 84 17 113 86 141 16 61 173 5 0; (D): 0 146 88 148 62 159 11 175 107 19 123 182 52

0; (D): 0 176 1 122 30 128 160 131 32 90 108 10 189 0; (D): 0 137 2 178 115 145 41 22 133 74 171 73 180

105 0; (D): 0 138 154 12 109 177 150 80 68 116 184 28 0; (D): 0 179 130 165 55 25 170 67 39 187 139 155

4 110 0; (D): 0 185 79 129 169 78 34 164 120 9 81 33 157 0; (D): 0 18 114 8 174 45 125 199 83 118 147 0;

(D): 0 26 149 198 197 56 186 23 75 72 21 40 53 0; (D): 0 101 70 20 188 66 65 136 35 135 71 161 103 51 0;

(D): 0 97 37 100 193 191 44 119 192 14 142 42 172 144 87 0;
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