
A simple and effective metaheuristic for the Minimum

Latency Problem

Marcos Melo Silvaa,∗, Anand Subramaniana,b, Thibaut Vidalc,d, Luiz Satoru
Ochia

aUniversidade Federal Fluminense, Instituto de Computação, Rua Passo da Pátria 156,

Bloco E - 3oandar, São Domingos, Niterói-RJ, 24210-240, Brazil
bUniversidade Federal da Paráıba, Departamento de Engenharia de Produção, Centro de

Tecnologia, Campus I - Bloco G, Cidade Universitária, João Pessoa-PB, 58051-970,

Brazil
cCIRRELT, Département d’informatique et de recherche opérationnelle, Université de

Montréal, Montréal H3C 3J7, Canada
dInstitut Charles Delaunay, Université de Technologie de Troyes, 10010 Troyes, France

Abstract

The Minimum Latency Problem (MLP) is a variant of the Traveling Sales-

man Problem which aims to minimize the sum of arrival times at vertices.

The problem arises in a number of practical applications such as logistics

for relief supply, scheduling and data retrieval in computer networks. This

paper introduces a simple metaheuristic for the MLP, based on a greedy ran-

domized approach for solution construction and iterated variable neighbor-

hood descent with random neighborhood ordering for solution improvement.

Extensive computational experiments on nine sets of benchmark instances

involving up to 1000 customers demonstrate the good performance of the

method, which yields solutions of higher quality in less computational time

when compared to the current best approaches from the literature. Optimal

solutions, known for problems with up to 50 customers, are also systemati-

∗Corresponding author: Tel. +55 21 2629-5665; Fax +55 21 2629-5666.
Email addresses: mmsilva@ic.uff.br (Marcos Melo Silva), anand@ct.ufpb.br

(Anand Subramanian), thibaut.vidal@cirrelt.ca (Thibaut Vidal),
satoru@ic.uff.br (Luiz Satoru Ochi)

Preprint submitted to European Journal of Operational Research March 12, 2012



cally obtained in a fraction of seconds.

Keywords: Metaheuristics, Minimum Latency Problem, GRASP, Iterated

Local Search

1. Introduction

The Minimum Latency Problem (MLP) can be defined as follows. Let

G = (V,A) be a complete directed graph, where V = {0, . . . , n} is the set of

vertices and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs with associated

travel time tij. Vertex 0 stands the depot while other vertices represent

customers. The MLP aims at finding a Hamiltonian circuit that minimizes
∑n

i=0 l(i), l(i) representing the latency of a vertex i ∈ V , that is, the total

travel time to reach i. We also consider the additional constraint that the

circuit must start and end at vertex 0 and also that l(0) = 0. The MLP is a

variant of the well-known Traveling Salesman Problem (TSP) and it is known

in the literature under various other names: Traveling Repairman Problem

(Tsitsiklis, 1992), Delivery Man Problem (Fischetti et al., 1993), Cumulative

Traveling Salesman Problem (Bianco et al., 1993) and School Bus Driver

Problem (Chaudhuri et al., 2003). The constraint on the tour origin at 0 is

sometimes not considered in early articles, but this variant can be tackled in

our context by adding a dummy depot such that t0j = tj0 = 0 for j ∈ V .

The MLP was proven NP-hard for general metric spaces (Sahni and

Gonzalez, 1976) and also when the subjacent structure is an edge-weighted

tree (Sitters, 2002). For structures such as paths, unweighted trees and

trees with diameter at most 3, polynomial-time algorithms based on dynamic

programming have been proposed (Blum et al., 1994; Garćıa et al., 2002; Wu

et al., 2004). Although the MLP seems to be a simple TSP variant, one can

verify that the former has properties that are not present in the latter. One of

them is that small local modifications in the configuration of the input points

can lead to highly nonlocal changes in the structure of an optimal solution

(Blum et al., 1994; Goemans and Kleinberg, 1998). Another feature of the

2



MLP is the nonlocal character of the objective function, as an additional arc

inserted in the beginning of the circuit affects the latency of all remaining

vertices (Arora and Karakostas, 2003).

Real-life applications of the MLP often arise from distribution systems,

where some quality criterion regarding the customer satisfaction must be fo-

cused. The MLP considers waiting times (latency) of a service system from

the customer’s point of view, i.e., while in the MLP the objective is to mini-

mize the average waiting time of each customer, in the TSP the objective is

to minimize the total time required to visit all customers. In view of this, one

can say that the MLP is customer oriented, while the TSP is server oriented

(Archer and Williamson, 2003). Therefore, the MLP can be employed in the

modeling of different types of service systems. Important practical appli-

cations can be found in home delivery services (Méndez-Dı́az et al., 2008),

logistics for emergency relief (Campbell et al., 2008) and data retrieval in

computer networks (Ezzine et al., 2010). However, although the MLP ap-

pears in several important settings, this problem has not received sufficient

attention in the literature so far. In particular, few efficient heuristics have

been designed to tackle problems of realistic size. Moreover, current exact

methods are not capable of consistently solving instances with more than 100

customers.

The contributions of this work are twofold. The first one is to present a

simple and effective metaheuristic for the MLP, which combines components

of Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Re-

sende, 1995), Iterated Local Search (ILS) (Lourenço et al., 2003) and Vari-

able Neighborhood Descent with Random neighborhood ordering (RVND)

(Mladenović and Hansen, 1997; Subramanian et al., 2010). The second con-

tribution is a simple move evaluation procedure that requires O(1) amortized

elementary operations. Such procedure can be applied to any neighborhood

structure based on a bounded number of arc exchanges and thus to all clas-

sical neighborhoods used in the MLP literature. The proposed solution ap-

3



proach is easy to implement and relies on very few parameters. Extensive

computational experiments on benchmark instances involving up to 1000 cus-

tomers underline the remarkable performance of this method, both in terms

of solution quality and computational efficiency. Known optimal solutions

for problems with up to 107 customers are also systematically obtained in a

few seconds.

The remainder of the paper is organized as follows. Section 2 presents

some related works. Section 3 describes the proposed algorithm. Section 4

contains the computational results. Finally, Section 5 presents the concluding

remarks of this work.

2. Related Works

Several exact and non-exact approaches were proposed to solve the MLP

in the literature. However, as shown in the following, exact algorithms are

still limited to small problem sizes, while few efficient heuristic procedures

have been designed.

Lucena (1990) proposed an early exact enumerative algorithm, relying

on a non-linear integer formulation in which lower bounds are derived using

a Lagrangian relaxation. Bianco et al. (1993) put forward two exact algo-

rithms that incorporate lower bounds obtained via a Lagrangian relaxation.

Fischetti et al. (1993) proposed an enumerative algorithm that makes use

of lower bounds obtained from a linear integer programming formulation.

Van Eijl (1995) and Méndez-Dı́az et al. (2008) developed Mixed Integer Pro-

gramming (MIP) formulations. The latter also introduced various families

of valid inequalities which were evaluated using a branch-and-cut algorithm.

Ezzine et al. (2010) proposed two new integer programming formulations and

their linear relaxations were evaluated by means of computational experi-

ments. Bigras et al. (2008) suggested a number of integer programming for-

mulations as well as a branch-and-bound algorithm. Abeledo et al. (2010a,b)

developed a branch-cut-and-price approach over an extended formulation as

4



well as several families of facet defining inequalities. To our knowledge, their

solution method was the only one capable of solving instances with up to 107

customers.

Some approximation algorithms are also known for the MLP (Blum et al.,

1994; Goemans and Kleinberg, 1998; Arora and Karakostas, 2003; Ausiello

et al., 2000; Archer andWilliamson, 2003; Chaudhuri et al., 2003; Fakcharoen-

phol et al., 2007; Nagarajan and Ravi, 2008; Archer and Blasiak, 2010). The

first one was suggested by Blum et al. (1994) with an approximation factor

of 144. For general metric spaces, the smallest approximation factor of 3.59

was found by Chaudhuri et al. (2003). For the case where an edge-weighted

tree is considered, the smallest approximation factor, of 3.03, was obtained

by Archer and Blasiak (2010).

Up to this date, few metaheuristics are available for the MLP. Sale-

hipour et al. (2011) put forward a heuristic algorithm based on GRASP,

Variable Neighborhood Descent (VND) and Variable Neighborhood Search

(VNS) with a shaking procedure based on random relocations and neigh-

borhood restrictions to spatially close customers. A Tabu Search (TS) was

also developed by Dewilde et al. (2010) for the MLP with profits. Other ap-

proaches were designed primarily for the cumulative vehicle routing problem

(CCVRP), but can also tackle the MLP as a special case with a single vehicle.

The memetic algorithm of Ngueveu et al. (2010), especially, introduces new

move evaluation procedures in O(1) operations for some particular neigh-

borhood structures and produces high quality solutions on the previously

mentioned MLP benchmark. Finally, Ribeiro and Laporte (2012) developed

an adaptive large neighborhood search, which performed well in solving the

CCVRP, but it was not tested on the MLP.

It is worth noting that the MLP and the TSP appear as special cases of

a more general problem known as the Time-Dependent TSP (TDTSP). In

this problem, the cost associated with the travel path between two vertices

depends not only on their localization in the metric space but also on the

5



position in which they appear in the circuit. The objective is to minimize

the total cost of visiting all nodes (Abeledo et al., 2010a,b; Blum et al., 1994;

Lucena, 1990). The TDTSP and the MLP can be also seen as single-machine

scheduling problems with sequence-dependent processing times (Bigras et al.,

2008; Gouveia and Voss, 1995; Picard and Queyranne, 1978) and under a

“flowtime” performance measure (Tsitsiklis, 1992). Finally, other MLP vari-

ants can be also found in the literature. The variant with time windows was

studied by Heilporn et al. (2010), Tsitsiklis (1992) and Van Eijl (1995). The

case with asymmetric costs was examined by Nagarajan and Ravi (2008)

and the variant with multiple servers was tackled by Fakcharoenphol et al.

(2007).

3. Proposed Algorithm

The simple and efficient metaheuristic proposed here and called GILS-

RVND brings together the components of GRASP, ILS and RVND. The

pseudocode of the developed approach is presented in Alg. 1. The method

performs IMax iterations (lines 3-21), where in each of which an initial solu-

tion is generated using a greedy randomized procedure. The level of greed-

iness is controlled by a parameter α, which is randomly chosen among the

values of a given set R. Each initial solution is then improved by means of a

RVND procedure combined with a perturbation mechanism in the spirit of

ILS (lines 8-15), which is run until IILS consecutive perturbations without

improvements are performed. It is important to mention that the perturba-

tion is always performed on the best current solution s′ of a given iteration

(acceptance criterion). Finally, the heuristic returns the best solution s∗

among all iterations.

3.1. Constructive Procedure

The constructive procedure, used to generate initial solutions, is described

in Alg. 2. Firstly, a partial solution s is initialized with a vertex associated

6



Algorithm 1: GILS-RVND

Procedure GILS-RVND(IMax, IILS , R)1

f∗ ←∞;2

for i← 1, . . . , IMax do3

α← random value ∈ R;4

s← Construction(α);5

s′ ← s;6

iterILS ← 0;7

while iterILS < IILS do8

s← RVND(s);9

if f(s) < f(s′) then10

s′ ← s;11

iterILS ← 0;12

endif13

s← Perturb(s′);14

iterILS ← iterILS + 1;15

endwhile16

if f(s′) < f∗
then17

s∗ ← s′;18

f∗ ← f(s′);19

endif20

endfor21

return s∗;22

end GILS-RVND23

to the depot (line 2), whereas a Candidate List (CL) is initialized with the

remaining vertices (lines 3 and 4). In the main loop (lines 6-13), CL is sorted

in ascending order according to the nearest neighbor criterion with respect

to the last vertex added to s (line 7). A Restricted Candidate List (RCL)

(line 8) is then built by considering only the α% best candidates of CL.

Next, a customer is chosen at random from RCL and added to s (lines 9

and 10). When the set of the α% best candidates is of size less than one

or when α = 0, the algorithm chooses the best candidate. The constructive

procedure terminates when all customers are added to s.

7



Algorithm 2: Construction

Procedure Construction(α)1

s ∪ {0};2

Initialize Candidate List CL;3

CL← CL− {0};4

r ← 0;5

while CL 6= ∅ do6

Sort CL in ascending order according to their distance with7

respect to r;
Update RCL considering only the α% best candidates of CL;8

Choose c ∈ RCL at random;9

s ∪ {c};10

r ← c;11

CL← CL− {r};12

endwhile13

return s;14

end Construction15

3.2. Improvement Procedure with Efficient Move Evaluations

The local search is performed by a method based on RVND. Let t be

the number of neighborhood structures and N = {N1, N2, N3, . . . , N t} be

their corresponding set. Whenever a given neighborhood of the set N fails

to improve the current best solution, RVND randomly selects another neigh-

borhood from the same set to continue the search. Preliminary tests revealed

that this approach is capable of finding better solutions as compared to those

that adopt a deterministic order.

The setN is composed of the following five well-known TSP neighborhood

structures, whose associated solutions are explored in an exhaustive fashion

with a best improvement strategy.

• Swap — N (1) — Two customers of the tour are interchanged.

• 2-opt — N (2) — Two non-adjacent arcs are removed and another two

are inserted in order to build a new feasible tour.

8



• Reinsertion — N (3) — One customer is relocated to another position

of the tour.

• Or-opt2 — N (4) — Two adjacent customers are reallocated to another

position of the tour.

• Or-opt3 —N (5) —Three adjacent customers are reallocated to another

position of the tour.

Algorithm 3: RVND

Procedure RVND(s)1

Initialize the Neighborhood List NL;2

Initialize re-optimization data structures on subsequences;3

while NL 6= ∅ do4

Choose a neighborhood N (η) ∈ NL at random;5

Find the best neighbor s′ of s ∈ N (η);6

if f(s′) < f(s) then7

s← s′;8

f(s)← f(s′);9

Update NL;10

Update re-optimization data structures;11

else12

Remove N (η) from the NL;13

endif14

endwhile15

return s;16

end RVND17

It is worth emphasizing that neighbor evaluations in the MLP case are

less straightforward than for the classic TSP, since the time of service of

a large proportion of customers are impacted during moves. A direct cost

evaluation procedure involves examining customer visits in the sequence or-

der with a view of computing their latencies and thus the total cost. This

method unfortunately leads to O(n) operations for each move evaluation,

9



resulting in O(n3) operations for a full neighborhood search. In the spirit of

the feasibility checking approach of Savelsbergh (1985), originally designed

for the vehicle routing problem with time windows, Ngueveu et al. (2010)

proposed a move evaluation procedure, which requires O(1) amortized op-

erations. Such procedure is based on the management of global information

on partial routes.

We follow this line of thought and propose a very simple move evaluation

approach, also requiring O(1) amortized operations, which can be generally

applied to any neighborhood structure based on a bounded number of arc

exchanges. The approach relies on a re-optimization framework “by concate-

nation”, originally developed by Kindervater and Savelsbergh (1997) and

extended by Vidal et al. (2011) to a wide range of move evaluation settings

presenting temporal characteristics. Indeed, any arc exchange-based move

involves separating the visit sequence into several subsequences, which are

then concatenated together. We thus introduce some “re-optimization data

structures” to characterize the cost of subsequences σ = (σu, . . . , σv), and

show how to update them on larger subsequences by induction on the con-

catenation operator, here defined as ⊕. The following data structures are

used:

• Duration T (σ) to perform the visits sequence σ;

• Cost C(σ) to perform the sequence, when starting at time 0;

• Delay cost W (σ), related to a one time unit delay in the starting time.

For a sequence with a single vertex σ0 = i, the duration T (σ0) is 0 by

default since there is no travel time. The constant cost C(σ0) is set to 0,

whereas the delay cost W (σ0) is set to 1 when the vertex is a customer,

otherwise W (σ0) = 0. Proposition 1 then enables to compute these values

on larger subsequences by induction on the concatenation operator.

10



Proposition 1. Let σ = (σu, . . . , σv) and σ′ = (σ′

w, . . . , σ
′

x) be two sub-

sequences of visits. The sub-sequence σ ⊕ σ′ = (σu, . . . , σv, σ
′

w, . . . , σ
′

x) is

characterized by the following values:

T (σ ⊕ σ′) = T (σ) + tσvσ′

w

+ T (σ′) (1)

C(σ ⊕ σ′) = C(σ) +W (σ′)(T (σ) + tσvσ′

w

) + C(σ′) (2)

W (σ ⊕ σ′) = W (σ) +W (σ′) (3)

The proposed neighborhood evaluation procedure relies on Proposition

1 to compute the cost of relevant sub-sequences (and their reversal for 2-

opt moves), during a preprocessing phase in O(n2) operations; and then to

evaluate the cost C(σ) of tours issued from moves as the concatenation of

several sub-sequences. Classical neighborhoods in the literature correspond

to a concatenation of less than five sub-sequences. Hence, when data on

sub-sequences has been processed, any move evaluation is performed in a

constant number of operations and thus a full neighborhood is performed

in O(n2) operations. An illustrative example of the re-optimization data

structures and the cost evaluation is given in Appendix A.

The pseudocode of the RVND procedure is described in Algorithm 3.

Firstly, the Neighborhood List (NL) is initialized with all neighborhood

structures, as well as the re-optimization data structures (lines 2-3). In the

main loop (lines 4-15), a given neighborhood structure N (η) is selected at

random from the NL (line 5). Neighbor solutions are evaluated in O(1)

operations, using the re-optimization data structures and the best found so-

lution is stored in s′ (line 6). In case of improvement, NL is repopulated

with all neighborhood structures and the re-optimization data structures are

updated (lines 7-12). Otherwise, N (η) is removed from NL (line 13). The

procedure terminates when NL becomes empty.

11



3.3. Perturbation Mechanism

When the local search fails to improve a solution s, a perturbation is

applied over the best current solution s′ of the corresponding GILS-RVND

iteration. The perturbation mechanism, called double-bridge, was originally

developed by Martin et al. (1991) for the TSP. It consists in removing and

re-inserting four arcs in such a way that a feasible tour is generated (see

Fig. 1). This mechanism can also be seen as a permutation of two disjoint

segments of a tour.

Figure 1: Double-Bridge

4. Computational Results

The algorithm was coded in C++ (g++ 4.4.3) and executed on an Intel R©

CoreTM i7 2.93 GHz, with 8.0 GB of RAMmemory running under GNU/Linux

Ubuntu 10.04 (kernel 2.6.32-25). Only a single thread was used in the ex-

periments.

Through preliminary tests, we observed that the values IMax = 10, IILS =

min{100, n} and R = {0.00, 0.01, 0.02, . . . , 0.25} resulted in a good trade-off

between solution quality and run time. This parameter setting has thus been

used in the following experiments.

GILS-RVND was tested on 9 sets of benchmark instances. Seven of these

sets were generated by Salehipour et al. (2011), where each of them is com-

posed of 20 instances with 10, 20, 50, 100, 200, 500 and 1000 customers,

respectively. Another set of 10 instances ranging from 70 to 532 customers

12



was selected from the TSPLIB (Reinelt, 1991) by the same authors. It is

important to mention that Salehipour et al. (2011) considered the version

where the objective is to find the minimum latency over a Hamiltonian path

starting from vertex 0. Finally, we present results on a last subset of instances

from the TSPLIB, selected by Abeledo et al. (2010a,b) and composed of 23

test-problems ranging between 42 and 107 customers.

Until this date, optimal solutions were only reported by Salehipour et al.

(2011) for instances with up to 20 customers. We had access to the source

code of the BCP approach of Abeledo et al. (2010a), and ran their algorithm

to find the optimal solutions of all instances with up to 50 customers. Sale-

hipour et al. (2011) and Ngueveu et al. (2010) also did not report detailed

results for every instance, but only the average gap between their solutions

and those obtained by a greedy nearest neighbor heuristic on each group of

instances. Hence, in order to compare our heuristic with the best methods

developed by Salehipour et al. (2011) and Ngueveu et al. (2010), we report

the average solution quality of GILS-RVND over 10 runs, for each instance,

relative to the nearest neighbor heuristic, which is equivalent to our construc-

tive procedure with α = 0.

In the tables presented hereafter, Instance denotes the instance, OPT is

the optimal solution, UB indicates the upper bound obtained by the nearest

neighbor heuristic, Best Sol. corresponds to the best solution obtained by

GILS-RVND and Avg. Sol denotes the average solution of 10 executions

found by GILS-RVND. Avg. Time is the average time in seconds of 10

executions of the proposed algorithm, while cTime represents scaled run

times, estimated on a Pentium IV by means of the factors of Dongarra (2011).

Finally, Avg. Gap is the average gap between the average solution and

either the optimal solution (Avg. Gap = (100(Avg. Sol - OPT)/OPT)),

when available, or the UB given by the nearest neighbor heuristic (Avg. Gap

= (100(Avg. Sol - UB)/UB)). Improved solutions are highlighted in boldface.

Table 1 compares the solutions obtained by the exact algorithm of Abeledo

13



et al. (2010a) and those found by GILS-RVND for the set of 23 test-problems

selected from the TSPLIB by Abeledo et al. (2010a). GILS-RVND found the

optimal solutions, when available, in all executions. Moreover, new best so-

lutions were found for the two remaining open instances (rat99 and eil101).

Table 2 compares the best solutions obtained by Salehipour et al. (2011)

and those found by GILS-RVND for the set of 10 instances selected from the

TSPLIB by Salehipour et al. (2011). It can be observed that GILS-RVND

was capable of equaling or improving the best known solutions in all cases.

The average gap between the average solutions obtained by GILS-RVND and

best solutions reported by Salehipour et al. (2011) was −2.34%. When com-

puting the average, we did not consider the result of the last instance, called

“att532”, since the large gap between the two methods seemed abnormal.

Table 3 presents the average results of GILS-RVND on the instances of

size 10, 20 and 50, generated by Salehipour et al. (2011). These solutions

are compared with optimal values, found either by Salehipour et al. (2011)

for problems with less than 20 customers, or by Abeledo et al. (2010a) for

problems with 50 customers. It is noteworthy that GILS-RVND found opti-

mal solutions during all executions, with an average computational time of

0.01, 0.02 and 0.55 seconds, respectively.

Tables 4, 5, 6 and 7 compare the results of GILS-RVND with the upper

bounds obtained using the nearest neighbor heuristic on the remaining in-

stances suggested by Salehipour et al. (2011) with 100, 200, 500 and 1000 cus-

tomers. As expected, the proposed method largely improves upon the nearest

neighbor heuristic, with average gaps of −13.00%, −14.35%, −15.16% and

−15.47%, respectively.

Finally, Table 8 presents a summarized comparison between the average

gaps, with respect to the nearest neighbor heuristic, found by GILS-RVND,

Salehipour et al. (2011) (GRASP+VNS deep version) and Ngueveu et al.

(2010) (memetic deep version) for the seven sets of instances of Salehipour

et al. (2011). The proposed algorithm led to larger improvements for most

14



Table 1: Results for TSPLIB instances selected by Abeledo et al. (2010a,b)
Abeledo et. al. GILS-RVND

Instance OPT Best Avg. Avg. Avg.
or UB Sol. Sol. Gap (%) Time (s)

dantzig42 12528 12528 12528.00 0.00 0.16
swiss42 22327 22327 22327.00 0.00 0.16
att48 209320 209320 209320.00 0.00 0.32
gr48 102378 102378 102378.00 0.00 0.33
hk48 247926 247926 247926.00 0.00 0.30
eil51 10178 10178 10178.00 0.00 0.49
berlin52 143721 143721 143721.00 0.00 0.46
brazil58 512361 512361 512361.00 0.00 0.78
st70 20557 20557 20557.00 0.00 1.65
eil76 17976 17976 17976.00 0.00 2.64
pr76 3455242 3455242 3455242.00 0.00 2.31
pr76r 345427 345427 345427.00 0.00 2.41
gr96 2097170 2097170 2097170.00 0.00 6.19
rat99 58288* 57986 57986.00 -0.52 11.27
kroA100 983128 983128 983128.00 0.00 8.59
kroB100 986008 986008 986008.00 0.00 9.21
kroC100 961324 961324 961324.00 0.00 8.17
kroD100 976965 976965 976965.00 0.00 8.46
kroE100 971266 971266 971266.00 0.00 8.31
rd100 340047 340047 340047.00 0.00 8.52
eil101 27519* 27513 27513.00 -0.02 12.76
lin105 603910 603910 603910.00 0.00 8.42
pr107 2026626 2026626 2026626.00 0.00 10.89
* Optimality is not proven for this instance

Table 2: Results for TSPLIB instances selected by Salehipour et al. (2011)
Salehipour et. al. GILS-RVND

Instance Best Best Avg. Avg. Avg.
Sol. Sol. Sol. Gap (%) Time (s)

st70 19553 19215 19215.00 -1.73 1.51
rat99 56994 54984 54984.00 -3.53 9.47
kroD100 976830 949594 949594.00 -2.79 6.90
lin105 585823 585823 585823.00 0.00 6.19
pr107 1983475 1980767 1980767.00 -0.14 8.13
rat195 213371 210191 210335.90 -1.42 75.56
pr226 7226554 7100308 7100308.00 -1.75 59.05
lin318 5876537 5560679 5569819.50 -5.22 220.59
pr439 18567170 17688561 17734922.00 -4.48 553.74
att532 18448435 5581240 5597866.80 – 1792.61
Average -2.34

15



Table 3: Results obtained on the small instances generated by Salehipour et al. (2011),
involving 10, 20 and 50 customers

OPT
Instance S10 S20 S50

TRP-Sn-R1 1303 3175 12198
TRP-Sn-R2 1517 3248 11621
TRP-Sn-R3 1233 3570 12139
TRP-Sn-R4 1386 2983 13071
TRP-Sn-R5 978 3248 12126
TRP-Sn-R6 1477 3328 12684
TRP-Sn-R7 1163 2809 11176
TRP-Sn-R8 1234 3461 12910
TRP-Sn-R9 1402 3475 13149
TRP-Sn-R10 1388 3359 12892
TRP-Sn-R11 1405 2916 12103
TRP-Sn-R12 1150 3314 10633
TRP-Sn-R13 1531 3412 12115
TRP-Sn-R14 1219 3297 13117
TRP-Sn-R15 1087 2862 11986
TRP-Sn-R16 1264 3433 12138
TRP-Sn-R17 1058 2913 12176
TRP-Sn-R18 1083 3124 13357
TRP-Sn-R19 1394 3299 11430
TRP-Sn-R20 951 2796 11935

instance categories and also required smaller scaled computational time, thus

outperforming previous methods.

5. Concluding Remarks

This paper introduced a new hybrid metaheuristic for the Minimum La-

tency Problem, which gathers several successful concepts from GRASP, ILS,

RVND, along with simple move evaluation procedures in O(1) time. The

latter methodology can be applied to any neighborhood structure based on a

bounded number of arc exchanges or visit relocations. The overall approach

is simple to describe and to implement. Its effectiveness, in terms of both

solution quality and computational time, was assessed by extensive experi-

ments on 173 benchmark instances containing up to 1000 customers. The

16



Table 4: Results on the 100-customers instances generated by Salehipour et al. (2011)
GILS-RVND

Instance UB Best Avg. Avg. Avg.
Sol. Sol. Gap (%) Time (s)

TRP-S100-R1 35334 32779 32779.00 -7.23 7.05
TRP-S100-R2 38442 33435 33435.00 -13.02 7.51
TRP-S100-R3 37642 32390 32390.00 -13.95 7.07
TRP-S100-R4 37508 34733 34733.00 -7.40 7.27
TRP-S100-R5 37215 32598 32598.00 -12.41 8.87
TRP-S100-R6 40422 34159 34159.00 -15.49 7.82
TRP-S100-R7 37367 33375 33375.00 -10.68 8.74
TRP-S100-R8 38086 31780 31780.00 -16.56 7.08
TRP-S100-R9 36000 34167 34167.00 -5.09 7.47
TRP-S100-R10 37761 31605 31605.00 -16.30 6.78
TRP-S100-R11 37220 34188 34188.00 -8.15 7.75
TRP-S100-R12 34785 32146 32146.00 -7.59 7.20
TRP-S100-R13 37863 32604 32604.00 -13.89 7.78
TRP-S100-R14 36362 32433 32433.00 -10.81 6.29
TRP-S100-R15 39381 32574 32574.00 -17.28 7.13
TRP-S100-R16 39823 33566 33566.00 -15.71 7.97
TRP-S100-R17 41824 34198 34198.00 -18.23 9.23
TRP-S100-R18 39091 31929 31929.00 -18.32 7.07
TRP-S100-R19 39941 33463 33463.00 -16.22 8.08
TRP-S100-R20 39888 33632 33632.00 -15.68 8.73
Average -13.00

Table 5: Results on the 200-customers instances generated by Salehipour et al. (2011)
GILS-RVND

Instance UB Best Avg. Avg. Avg.
Sol. Sol. Gap (%) Time (s)

TRP-S200-R1 105044 88787 88794.60 -15.47 73.39
TRP-S200-R2 104073 91977 92013.10 -11.59 68.07
TRP-S200-R3 111644 92568 92631.20 -17.03 67.11
TRP-S200-R4 104956 93174 93192.30 -11.21 72.17
TRP-S200-R5 101912 88737 88841.20 -12.83 70.77
TRP-S200-R6 103751 91589 91601.90 -11.71 70.52
TRP-S200-R7 109810 92754 92763.20 -15.52 72.80
TRP-S200-R8 103830 89048 89049.00 -14.24 75.15
TRP-S200-R9 100946 86326 86326.00 -14.48 65.45
TRP-S200-R10 108061 91552 91596.50 -15.24 74.25
TRP-S200-R11 103297 92655 92700.60 -10.26 73.15
TRP-S200-R12 107715 91457 91504.10 -15.05 76.74
TRP-S200-R13 100505 86155 86181.40 -14.25 72.96
TRP-S200-R14 107543 91882 91929.10 -14.52 70.94
TRP-S200-R15 100196 88912 88912.40 -11.26 70.41
TRP-S200-R16 104462 89311 89364.70 -14.45 77.89
TRP-S200-R17 107216 89089 89118.30 -16.88 71.17
TRP-S200-R18 108148 93619 93676.60 -13.38 77.03
TRP-S200-R19 105716 93369 93401.60 -11.65 71.08
TRP-S200-R20 116676 86292 86292.00 -26.04 70.61
Average -14.35

17



Table 6: Results on the 500-customers instances generated by Salehipour et al. (2011)
GILS-RVND

Instance UB Best Avg. Avg. Avg.
Sol. Sol. Gap (%) Time (s)

TRP-S500-R1 2192688 1841386 1856018.70 -15.35 1738.48
TRP-S500-R2 2176449 1816568 1823196.90 -16.23 1476.13
TRP-S500-R3 2261125 1833044 1839254.20 -18.66 1557.48
TRP-S500-R4 2088773 1809266 1815876.40 -13.06 1597.06
TRP-S500-R5 2216937 1823975 1834031.70 -17.27 1530.94
TRP-S500-R6 2137187 1786620 1790912.40 -16.20 1576.91
TRP-S500-R7 2212936 1847999 1857926.60 -16.04 1584.67
TRP-S500-R8 2132165 1820846 1829257.30 -14.21 1565.01
TRP-S500-R9 2141458 1733819 1737024.90 -18.89 1409.23
TRP-S500-R10 2163387 1762741 1767366.30 -18.31 1621.85
TRP-S500-R11 2288538 1797881 1801467.90 -21.28 1530.98
TRP-S500-R12 2081530 1774452 1783847.10 -14.30 1554.75
TRP-S500-R13 2080370 1873699 1878049.40 -9.73 1598.46
TRP-S500-R14 2051683 1799171 1805732.90 -11.99 1701.90
TRP-S500-R15 2035804 1791145 1797532.90 -11.70 1623.79
TRP-S500-R16 2142426 1810188 1816484.00 -15.21 1583.70
TRP-S500-R17 2117999 1825748 1834443.20 -13.39 1549.80
TRP-S500-R18 2159400 1826263 1833323.70 -15.10 1620.02
TRP-S500-R19 2009335 1779248 1782763.90 -11.28 1602.87
TRP-S500-R20 2155026 1820813 1830483.30 -15.06 1507.96
Average -15.16

Table 7: Results on the 1000-customers instances generated by Salehipour et al. (2011)
GILS-RVND

Instance UB Best Avg. Avg. Avg.
Sol. Sol. Gap (%) Time (s)

TRP-S1000-R1 6030081 5107395 5133698.30 -14.87 31894.51
TRP-S1000-R2 6282704 5106161 5127449.40 -18.39 30881.19
TRP-S1000-R3 5874496 5096977 5113302.90 -12.96 30184.15
TRP-S1000-R4 5892443 5118006 5141392.60 -12.75 29951.12
TRP-S1000-R5 6192250 5103894 5122660.70 -17.27 30129.51
TRP-S1000-R6 6056173 5115816 5143087.10 -15.08 28161.57
TRP-S1000-R7 5973701 5021383 5032722.00 -15.75 25945.41
TRP-S1000-R8 6046965 5109325 5132722.60 -15.12 26572.71
TRP-S1000-R9 6159862 5052599 5073245.30 -17.64 26330.40
TRP-S1000-R10 5843354 5078191 5093592.60 -12.83 25676.31
TRP-S1000-R11 6057225 5041913 5066161.50 -16.36 26235.63
TRP-S1000-R12 5996323 5029792 5051235.20 -15.76 27910.11
TRP-S1000-R13 6052162 5102520 5131437.50 -15.21 28475.89
TRP-S1000-R14 5952120 5099433 5118980.60 -14.00 27639.81
TRP-S1000-R15 5934175 5142470 5174493.20 -12.80 27633.07
TRP-S1000-R16 5925180 5073972 5090280.50 -14.09 26653.16
TRP-S1000-R17 6068380 5071485 5084450.40 -16.21 27503.43
TRP-S1000-R18 6169728 5017589 5037094.00 -18.36 28808.09
TRP-S1000-R19 6004893 5076800 5097167.60 -15.12 29637.49
TRP-S1000-R20 6159355 4977262 5002920.60 -18.78 27499.24
Average -15.47

18



Table 8: Comparison among different solution approaches.
Salehipour et. al. Ngueveu et. al. GILS-RVND

n UB Time UB cTime UB Avg. cTime
(%) (s) (%) (s) (%) Time (s) (s)

10 -2.44 0.00 -2.43 0.00 -2.44 0.00 0.00
20 -9.86 0.04 -10.11 0.01 -10.28 0.02 0.05
50 -9.74 3.54 -9.36 1.44 -11.01 0.55 1.36

100 -11.66 103.92 -11.95 93.26 -13.00 7.64 18.94
200 -16.21 3995.00 -12.81 938.16 -14.35 72.08 178.72
500 -9.71 10381.36 -13.85 16208.70 -15.16 1576.60 3909.03
1000 – – – – -15.47 28186.14 69884.87

Average -9.94 2413.06 -10.09 2873.60 -11.04 276.15 684.68
-11.67* 4263.29* 10570.42*

* Average considering the instances with 1000 customers.

method systematically obtains the optimal solution in a few seconds on in-

stances with up to 107 customers, where this value is known. Moreover, all

best known solutions of the benchmark instances have been either equaled

or improved.

Promising avenues of research involve extending the proposed algorithm

to other MLP variants such as the MLP with profits and the version with

multiple vehicles.

References

Abeledo, H., Fukasawa, R., Pessoa, A., Uchoa, E., December 2010a. The

time dependent traveling salesman problem: Polyhedra and algorithm.

Tech. Rep. RPEP Vol.10 n.15, Universidade Federal Fluminense, Brasil.

Abeledo, H. G., Fukasawa, R., Pessoa, A. A., Uchoa, E., 2010b. The time

dependent traveling salesman problem: Polyhedra and branch-cut-and-

price algorithm. In: Proceedings of the 9th International Symposium on

Experimental Algorithms, SEA 2010. pp. 202–213.

Archer, A., Blasiak, A., 2010. Improved approximation algorithms for the

minimum latency problem via prize-collecting strolls. In: Proceedings of

19



the 21th Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 429–

447.

Archer, A., Williamson, D. P., 2003. Faster approximation algorithms for

the minimum latency problem. In: Proceedings of the 40th Annual ACM-

SIAM Symposium on Discrete algorithms. pp. 88–96.

Arora, S., Karakostas, G., May 2003. Approximation schemes for minimum

latency problems. SIAM Journal on Computing 32 (5), 1317–1337.

Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A., 2000. On salesmen,

repairmen, spiders, and other traveling agents. In: Proceedings of the 4th

Italian Conference on Algorithms and Complexity. pp. 1–16.

Bianco, L., Mingozzi, A., Ricciardelli, S., 1993. The traveling salesman prob-

lem with cumulative costs. Networks 23 (2), 81–91.

Bigras, L.-P., Gamache, M., Savard, G., 2008. The time-dependent traveling

salesman problem and single machine scheduling problems with sequence

dependent setup times. Discrete Optimization 5 (4), 685–699.

Blum, A., Chalasanit, P., Pulleyblankt, B., Raghavan, P., Sudan, M., 1994.

The minimum latency problem. In: Proceedings of the 26th Annual ACM

Symposium on Theory of Computing. pp. 163–171.

Campbell, A., Vandenbussche, D., Hermann, W., 2008. Routing for relief

efforts. Transportation Science 42 (2), 127–145.

Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K., 2003. Paths, trees, and min-

imum latency tours. In: Proceedings of the 44th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2003. pp. 36–45.

Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F. C. R., Vansteenwegen,

P., 2010. Heuristics for the traveling repairman problem with profits. In:

20



Proceedings of the 10th Workshop on Algorithmic Approaches for Trans-

portation Modelling, Optimization, and Systems, ATMOS 2010. pp. 34–44.

Dongarra, J. J., 2011. Performance of various computers using standard lin-

ear equations software. Tech. Rep. CS-89-85, Computer Science Depart-

ment, University of Tennessee, Knoxville, TN, USA.

Ezzine, I. O., Semet, F., Chabchoub, H., 2010. New formulations for the trav-

eling repairman problem. In: Proceedings of the 8th International Confer-

ence of Modeling and Simulation.

Fakcharoenphol, J., Harrelson, C., Rao, S., November 2007. The k-traveling

repairmen problem. ACM Transactions on Algorithms 3 (4), 40+.

Feo, T. A., Resende, M. G. C., 1995. Greedy Randomized Adaptive Search

Procedures. Journal of Global Optimization 6 (2), 109–133.

Fischetti, M., Laporte, G., Martello, S., 1993. The delivery man problem and

cumulative matroids. Operations Research 41 (6), 1055–1064.

Garćıa, A., Jodrá, P., Tejel, J., 2002. A note on the traveling repairman

problem. Networks 40 (1), 27–31.

Goemans, M. X., Kleinberg, J. M., 1998. An improved approximation ratio

for the minimum latency problem. Mathematical Programming 82 (1),

111–124.

Gouveia, L., Voss, S., May 1995. A classification of formulations for the (time-

dependent) traveling salesman problem. European Journal of Operational

Research 83 (1), 69–82.

Heilporn, G., Cordeau, J.-F., Laporte, G., 2010. The delivery man problem

with time windows. Discrete Optimization 7 (4), 269–282.

21



Kindervater, G., Savelsbergh, M., 1997. Vehicle routing: Handling edge ex-

changes. In: Aarts, E., Lenstra, J. (Eds.), Local Search in Combinatorial

Optimization. Wiley, New York, pp. 337–360.

Lourenço, H., Martin, O., Stützle, T., 2003. Iterated Local Search. In:

Glover, F., Kochenberger, G. (Eds.), Handbook of Metaheuristics. Kluwer

Academic Publishers, pp. 320–353.

Lucena, A., 1990. time-dependent traveling salesman problem - The deliv-

eryman case. Networks 20 (6), 753–763.

Martin, O., Otto, S. W., Felten, E. W., 1991. Large-step Markov chains for

the traveling salesman problem. Complex Systems 5 (3), 299–326.

Méndez-Dı́az, I., Zabala, P., Lucena, A., 2008. A new formulation for the

traveling deliveryman problem. Discrete Applied Mathematics 156 (17),

3223–3237.

Mladenović, N., Hansen, P., November 1997. Variable Neighborhood Search.

Computers & Operations Research 24 (11), 1097–1100.

Nagarajan, V., Ravi, R., 2008. The directed minimum latency problem. In:

Proceedings of the 11th International Workshop, APPROX 2008, and 12th

International Workshop, RANDOM 2008 on Approximation, Randomiza-

tion and Combinatorial Optimization: Algorithms and Techniques. pp.

193–206.

Ngueveu, S., Prins, C., Wolfler Calvo, R., 2010. An effective memetic algo-

rithm for the cumulative capacitated vehicle routing problem. Computers

& Operations Research 37 (11), 1877–1885.

Picard, J.-C., Queyranne, M., 1978. The time-dependent traveling sales-

man problem and its application to the tardiness problem in one-machine

scheduling. Operations Research 26 (1), 86–110.

22



Reinelt, G., 1991. TSPLIB–A traveling salesman problem library. INFORMS

Journal on Computing 3 (4), 376–384.

Ribeiro, G., Laporte, G., 2012. An adaptive large neighborhood search

heuristic for the cumulative capacitated vehicle routing problem. Com-

puters & Operations Research 39 (3), 728–735.

Sahni, S., Gonzalez, T., July 1976. P-complete approximation problems.

Journal of The ACM 23 (3), 555–565.

Salehipour, A., Sörensen, K., Goos, P., Bräysy, O., 2011. Efficient

GRASP+VND and GRASP+VNS metaheuristics for the traveling repair-

man problem. 4OR: A Quarterly Journal of Operations Research 9 (2),

189–209.

Sitters, R., 2002. The minimum latency problem is NP-hard for weighted

trees. In: Proceedings of the 9th International Conference on Integer Pro-

gramming and Combinatorial Optimization, IPCO 2002. pp. 230–239.

Subramanian, A., Drummond, L. M. A., Bentes, C., Ochi, L. S., Farias,

R., November 2010. A parallel heuristic for the vehicle routing problem

with simultaneous pickup and delivery. Computers & Operations Research

37 (11), 1899–1911.

Tsitsiklis, J. N., 1992. Special cases of traveling salesman and repairman

problems with time windows. Networks 22 (3), 263–282.

Van Eijl, C. A., 1995. A polyhedral approach to the delivery man problem.

Tech. Rep. COSOR 95-19, Eindhoven University of Technology.

Vidal, T., Crainic, T., Gendreau, M., Prins, C., 2011. A unifying view on

timing problems and algorithms. Tech. rep., CIRRELT.

23



Wu, B. Y., Huang, Z.-N., Zhan, F.-J., December 2004. Exact algorithms

for the minimum latency problem. Information Processing Letters 92 (6),

303–309.

Appendix A. Example of efficient move evaluation for the MLP

Figure A.2 presents a numerical example on a small problem with five

vertices. The cost of each arc is indicated in italics. An Or-opt2 move is

illustrated, involving the relocation of customers 2 and 3 after customer 6.

Starting from the sequence (0, 1, 2, 3, 4, 5, 6, 0), this move produces a concate-

nation of four sub-sequences (0, 1)⊕ (4, 5, 6)⊕ (2, 3)⊕ (0).

Figure A.2: Or-opt2 move as a concatenation of four sub-sequences

The relevant preprocessed data structures are reported in the top of Ta-

ble A.9. The cost of the new sequence is then obtained by applying the

concatenations equations three times, to compute C((0, 1)⊕ (4, 5, 6)) and so

on.

24



Table A.9: Preprocessed data structures and partial results for a sequence evaluation

σ T (σ) C(σ) W (σ)
(0, 1) 1 1 1
(4, 5, 6) 2 3 3
(2, 3) 1 1 2
(0) 0 0 0

(0, 1)⊕ (4, 5, 6) 5 13 4
(0, 1)⊕ (4, 5, 6)⊕ (2, 3) 14 40 6

(0, 1)⊕ (4, 5, 6)⊕ (2, 3)⊕ (0) 14 40 6

25


