
GRASP with Path-Relinking for the SONET Ring Assignment Problem

Lucas de O. Bastos
Inst. de Computação - UFF

Niterói - RJ - Brasil
lbastos@ic.uff.br

Luiz S. Ochi
Inst. de Computação - UFF

Niterói - RJ - Brasil
satoru@ic.uff.br

Elder M. Macambira
Depto. de Estatı́stica - UFPB

João Pessoa - PB - Brasil
elder@de.ufpb.br

Abstract

In this paper, we consider a combinatorial optimization
problem that arises in telecommunications networks design.
It is known as the SONET ring assignment problem (SRAP).
In this problem, each client site has to be assigned to exactly
one SONET ring and a special ring interconnects the other
rings together. The problem is to find a feasible assignment
of the client sites minimizing the total number of rings used.
We describe a hybrid greedy randomized adaptive search
procedure (GRASP), including the path-relinking concept,
for finding good-quality solutions of the SRAP. Computa-
tional experiments on benchmark instances are reported,
comparing the GRASP with path-relinking with previously
proposed pure GRASP (without path-relinking) and with
other algorithms found in the literature. Experimental re-
sults illustrate the effectiveness of the proposed method,
over other methods, to obtain solutions that are either opti-
mal or very close to it.

1. Introduction

Consider the following node-partitioning problem. We
are given an undirected graph G = (V , E) and a positive
integer B. Associated to each edge (u, v) in E there is a non
negative integer duv . A feasible solution of the problem is a
partition of the vertices in G into disjoint sets V1, V2, . . . , Vk

such that: ∑
(u,v)∈G[Vj]

duv ≤ B, ∀j ∈ {1, . . . , k}, (1)

k∑
j=1

∑
(u,v)∈δ(Vj)|u<v

duv ≤ B, (2)

where G[Vj] is the graph induced by Vj in G and δ(Vj) is
the set of edges with exactly one extremity in Vj . The goal
is to find a feasible solution that minimizes the size of the
partition, i.e., the value of k.

This graph partitioning problem is also known as the
SONET ring assignment problem, or SRAP for short. The
SRAP arises in the design of fiber-optics telecommuni-
cation networks using the SONET (Synchronous Optical
NETwork) technology.

In this context, the vertices of graph G = (V,E), with
|V | = n, are associated to client sites while the edges are
associated to the existence of traffic demand between pairs
of clients. The edge weights measure the actual demand of
communication among clients. Given a feasible solution to
the graph partitioning problem stated above, the vertices in
each subset of the partition form a local ring or simply a
ring.

Due to physical limitations on the equipment used in
building the network, the total demand in each ring must
not exceed a constant B. Besides, the total demand between
clients in different clusters (local rings) is handled by an ad-
ditional ring called the federal ring.

The connection of a local ring to the federal ring is made
possible through a device known as a digital cross-connect
system (DCS). Since the capacity of the federal ring is also
bounded by B, the sum of the weights of the edges in the
multicut which corresponds to any feasible solution cannot
be larger than that amount.

Finally, because the DCS’s are by far the most expensive
equipment needed to implement a network, a basic problem
in the design of low-cost SONET networks is to find a so-
lution that minimizes the number of local rings. One can
easily check that the graph partitioning problem discussed
at the beginning of this section correctly models the latter
problem.

The SRAP is known to be NP-hard [6]. Exact and heuris-
tic algorithms have been proposed for the SONET ring as-
signment problem [1, 2, 6, 8].

The aim of this paper is to propose a new GRASP heuris-
tic for the SRAP, which makes use of path-relinking as an
intensification strategy. We evaluate experimentally this
heuristic and compare the solutions obtained by the new
heuristic with previously known solutions in the literature.

The remainder of the paper is organized as follows. In

Section 2, we briefly state the implementation of GRASP
for the SRAP from [2]. Path-relinking is presented in Sec-
tion 3. Section 4 gives a description of how GRASP and
path-relinking are combined. Experimental results, with
benchmark instances, are presented in Section 5. Finally,
concluding remarks are made in Section 6.

2 GRASP

A greedy randomized adaptive search procedure
(GRASP) is a multistart or iterative process, where different
points in the search space are probed with local search for
high-quality solutions [3, 9]. Each iteration of GRASP con-
sists of the construction of a randomized greedy solution,
followed by a local search, starting from the constructed so-
lution. The best solution from all iterations is returned as
result.

In the remainder of this section, we describe in detail the
phases of the GRASP for the SRAP described in [2] in order
to facilitate the discussion of path-relinking that will follow
in the next sections.

2.1 Construction phase

The construction phase builds, step-by-step, a feasible or
infeasible solution for the SRAP. Even when the construc-
tion phase discovers that the instance is feasible, infeasible
solutions can be visited. So, we allow more flexibility to
move along the search space.

The objective function has been modified to turn feasible
solutions more attractive than infeasible ones. To explain
the changes in the objective function, we define the follow-
ing value associated to a feasible solution S with vertices
set V1, . . . , Vr:

BN = max

(
0,

r∑
j=1

∑
(u,v)∈δ(Vj)|u<v

duv

)
, (3)

where BN indicate the total traffic through the federal ring.
Now, the cost of this solution in the modified objective func-
tion is computed by the formula:

z = r × B (feasible solution) or, (4)

z = 4r × B + BN (infeasible solution). (5)

We now turn our attention to the construction phase
of GRASP. The algorithm is an adaptation of the three
greedy heuristics (edge-based, cut-based and node-based)
presented in [6] to include randomization.

It always starts with a solution containing n rings with
only one vertex assigned to each of them. Those rings are
feasible since the instance itself is feasible. Therefore, the

only constraint that can be violated is the one that imposes
a limit on the demand on the federal ring.

At each iteration, the union of two rings into a single
one is considered. Such an union is accepted only if the re-
sulting ring is feasible. Clearly, this operation reduces the
amount of demand on the federal ring. The greedy choice
is guided by the demands on edges which are in the mul-
ticut set of the rings. The randomization will not force us
to pick the best edge (edge-based heuristic), best cut (cut-
based heuristic) or the best node (node-based heuristic). In-
stead, the selected edge, cut or node is chosen randomly
among the best candidates in the restricted candidate list
(RCL). We refer to [6] for more details on the edge-based,
cut-based and node-based heuristics.

We have also developed an algorithm for the construc-
tion phase based on the Relative Neighborhood Heuristic
(RNH) introduced in [2].

Let {u, v} be pairs of clients and δuv be the set of all
edges with exactly one extremity in u and those with exactly
one extremity in v. The RNH, first, generates a neighbor-
hood matrix establishing that two clients u and v are consid-
ered relative neighbors if the edge (u, v) ∈ δuv is associated
with the biggest value of duv among all edges in δuv . After
this step, all neighbor clients are gathered together in a ring
and the heuristic tries to merge rings the same way as the
cut-based heuristic does. We refer to [2] for more details on
RNH heuristic.

2.2 Local search

After a solution is constructed, a local search phase
should be executed as an attempt to improve the initial solu-
tion. If an improvement is detected, the solution is updated
and a new neighborhood search is initialized. Otherwise,
the solution is locally optimal with respect to the neighbor-
hood and the local search ends.

The definition of the neighborhood is crucial for the per-
formance of the local search. The local search procedure
here, is based on a neighborhood that tries to empty the ring
with the smallest demand, say rl, in the solution.

The current solution is initialized with the solution ob-
tained by the construction phase. Each vertex u is moved
from rl to one of the existing rings r such that r remains
feasible and the change in objective function z is the best
among all the possible moves. If rl becomes empty a new
ring rl is chosen and the local search is performed again on
the existing solution.

This procedure never turns a local ring infeasible and
never increases the traffic on the federal ring, so it never
turns a feasible solution into an infeasible one. Besides
that, it improves feasible solutions by reducing its number
of rings and infeasible ones by making them feasible.

3 Path-relinking

Path-relinking is an approach to integrate intensification
and diversification in search. It was originally proposed for
tabu search and scatter search [4, 5]. It consists in exploring
trajectories that connect high-quality (elite) solutions.

Starting from one or more elite solutions, paths in the
solution space leading toward other elite solutions are gen-
erated and explored in the search for better solutions. The
trajectory is generated by introducing into the initial solu-
tion, attributes of the guiding solution.

The use of path-relinking within a GRASP, as an inten-
sification strategy applied to each locally optimal solution,
was first used by Laguna and Martı́ in [7]. A recent survey
of GRASP with path-relinking is given in [10].

4 GRASP with path-relinking

In this section, we describe the aspects of GRASP with
path-relinking proposed for the SRAP.

This new heuristic works through a pool of elite solu-
tions P found during the execution. In our implementation,
the pool P is formed with solutions found in the previous
GRASP iterations. The pool P is originally empty.

The objective of path-relinking is to integrate features of
good solutions, found during the iterations of GRASP, into
new solutions generated in subsequent iterations.

In pure GRASP, i.e. GRASP without path-relinking, all
iterations are independent and therefore most good solu-
tions are simply forgotten. Path-relinking tries to change
this, by retaining previous solutions and using them as
guides to speed up convergence to a good quality solution.

We define one solution S for the SRAP as a vector of
cardinality equal to n. Each client site i, with i = 1, . . . , n,
belongs to the ring indicated in S(i). Each ring r is num-
bered such that r = min(i), i ∈ r. In this way, solutions
having exactly the same rings cannot be differently num-
bered.

Let S1 and S2 be two solutions, where S1 is the locally
optimal solution obtained after local search and S2 is one
of a few elite solutions in P . The path-relinking procedure
starts with one of the solutions (say, S1) and gradually trans-
forms it into the other (S2) by making S1(i) = S2(i) where
i is chosen among all the localities l where S1(l) �= S2(l).

The choice of the candidate i, in each step, is greedy:
we realized the most profitable (or least costly) one. The
outcome of the process is the best solution found in the path
from S1 to S2.

An important aspect of new heuristic is the choice of the
solutions S1 and S2. Empirically, we observed that an appli-
cation of path-relinking to a pair of solutions, with different
number of rings, is less probable to be successful than a pair
of solutions with same number of rings.

On the other hand, the longer the path between the so-
lutions, the greater the probability that an entirely different
local optimum will be found. Therefore, it is reasonable to
take into account not only solution quality, but also diversity
when dealing with the pool P of elite solutions.

So, we implemented one strategy for selecting S1 and
S2 solutions. Let c(S) be the number of rings in S, we have
the following situations where we apply the path-relinking
procedure:

(i) c(S1) = c(S2), and S1 and S2 are infeasible;

(ii) c(S1) < c(S2) and S1 is infeasible;

(iii) c(S1) > c(S2) and S2 is infeasible.

If condition (ii) is satisfied we reduce the number of rings
in S2 by emptying its lesser ring rl moving its nodes to the
best profitable rings excluding rl. We repeat this process
until c(S1) = c(S2). If condition (iii) is satisfied we ap-
ply the same strategy to reduce the number of rings in S1.
Note that, by doing this, the situations (ii) and (iii) become
unsatisfied and the situation (i) is satisfied.

In cases (iv), (v) and (vi) below, we don’t apply the path
relinking procedure because the existence of a feasible so-
lution prevents it to find a better feasible solution:

(iv) c(S1) = c(S2), and either S1 or S2 is feasible;

(v) c(S1) < c(S2) and S1 is feasible;

(vi) c(S1) > c(S2) and S2 is feasible.

After this selection, we generate two paths, one from S1

to S2 and the other from S2 to S1. This is done because
these paths often visit different intermediate solutions.

Another important point of the heuristic is the manage-
ment of the pool P of elite solutions. In [7], the authors
update their pool by maintaining in it three best-quality so-
lutions. We use an approach that obtained the elite solutions
within GRASP. The approach is explained below.

Assume that NR indicates the number of rings
to guide the path-relinking procedure. The value
is defined in the interval [zlb, c(Sbest)] with zlb =(∑

u∈V

∑
v∈V |u<v duv

)
/ B and c(Sbest) corresponds to

the number of rings of the best solution Sbest found.
So, one solution S is added to the pool P if it satisfies the

condition: c(S) = NR. Once accepted for insertion into P ,
S replaces the last elite solution in P , which is discarded
from P . All candidate solutions with more than NR rings
have to have its number of rings reduced to be exposed to
path-relinking, according to the rules (i) to (iii) explained
above.

Now, we show how the procedures described above and
in section 2 are combined in our implementation. Figure 1
shows the steps of path-relinking for the SRAP. Let S be the

current solution obtained by pure GRASP and T the guiding
solution. The procedure will make at most n client site ex-
changes (lines 3 to 18) until the current solution S becomes
equal to the guiding solution T . In each step, the best ex-
change is found (lines 4 to 12) and applied to S (lines 13
and 14). The algorithm also checks if the generated solu-
tion is better than the best known solution and, if so, saves
it (lines 15 and 16).

procedure PATHRL(n, S, T)
1. A← S;
2. B ← (z(T) < z(S) ? T : S);
3. for i← 1 to n do
4. for j ← 1 to n do
5. if (S(i) �= T (i)) and (S(j) �= T (j)) then
6. S(j)← T (j);
7. if (z(S) < z(A)) then
8. k ← j;
9. end-if
10. S(j)← A(j);
11. end-if
12. end-for
13. A(k)← T (k);
14. S(k)← T (k);
15. if z(A) < z(B) then
16. B ← A;
17. end-if
18. end-for
19. return(B).
end PATHRL.

Figure 1. Path-relinking.

Figure 2 shows the steps of GRASP with path-relinking.
Initially, the pool of elite solutions P is empty (line 1).
Each iteration consists of solution construction, local search
using the constructed solution as the initial solution (lines
4 and 5), and after nItrPR iterations are done, a path-
relinking phase is executed.

Initially, when the pool owns less than two solutions, if
the solution generated by GRASP has NR rings and it is in-
feasible, then the solution is inserted into the pool P (lines
29 to 31). The pool doesn’t accept feasible solutions ac-
cording to the rules (i) to (vi) explained above.

Path-relinking preliminary work starts making the solu-
tion produced by local search to have NR rings just like the
solution selected at random from P (lines 10 to 12). Then,
if S stays infeasible, path-relinking is done from S to T
and from T to S and at each step the resulting solution r is
checked to enter the pool and to substitute the best solution
found Sbest (lines 13 to 28).

procedure GRASP-PR(n)
1. P = ∅;
2. Sbest ← construct();
3. for i← 1 to maxItr do
4. S ← construct();
5. S ← localSearch(S);
6. if (z(S) < z(Sbest)) then
7. Sbest ← S;
8. if i > nItrPR then
9. if |P | > 1 then
10. Select elite solution T ∈ P at random;
11. while c(S) > c(T) do
12. reduceOneRing(S);
13. if (c(S) = c(T) and not isFeasible(S)) then
14. r ← PATHRL(n, S, T);
15. if not isFeasible(r) then
16. UPDATE POOL(r, P);
17. if (z(r) < z(Sbest)) then
18. Sbest ← r;
19. r ← PATHRL(n, T, S);
20. if not isFeasible(r) then
21. UPDATE POOL(r, P);
22. if (z(r) < z(Sbest)) then
23. Sbest ← r;
24. end-if
25. else if (c(S) = RN and not isFeasible(S)) then
26. P ← P ∪ {S};
27. if (i mod nItrPR) = 0 then
28. emptyPool(P);
29. NR← (NR = c(Sbest) ? zlb : NR + 1);
30. end-if
31. end-if
32. end-for
33. return(Sbest).
end GRASP-PR.

Figure 2. GRASP with path-relinking.

5 Computational results

In this section, we illustrate the use of GRASP on ran-
domly generated test problems. All tests were run on a PC
desktop equipped with a 1700 MHz Pentium IV processor
and 256 Mbytes of RAM under Linux operating system.
The GRASP code is written in C ++ language.

5.1 Test problems

Before we describe the experimental results, we must
comment about benchmark instances used. The set of in-
stances is divided into two categories. Instances in category
C1 are taken from [6] and correspond to instances type 1
and 2 in that paper. Category C2 is composed of all in-
stances tested in [1] excluding those already in C1.

In total, there are 111 instances in C1 and 230 in C2.

Within each category, instances are divided into geometric
and random ones and, then, further divided into those hav-
ing low and high ring capacities, respectively, 155 Mbs and
622 Mbs. These characteristics of an instance can be de-
duced from its name. Instance names always start with two
letters. The first letter is either G or R meaning that the in-
stance belongs to the geometric or the random subdivision,
respectively. The second letter is either L or H, depending if
the ring capacity is 155 Mbs or 622 Mbs, respectively. For
instances in class C2, the first name is new. For more details
on how those instances were generated and their properties,
we refer the interested reader to the original papers where
they were introduced.

5.2 Experiments

Our objective with the experimental part of this paper
is to evaluate the effectiveness of the path-relinking when
used in conjuction with GRASP.

For each instance considered in our experiments, we fix
a solution target value equal to the optimal solution. In [8],
the author implemented an exact algorithm that provided
optimal solutions for the two categories C1 and C2. More-
over, the tests were processed using 1000 iterations for each
instance and each one was executed 10 times with different
seeds, recording the time taken for each algorithm to find
the solution target for each instance.

In Tables 1 and 2, we show the results obtained for
the categories C1 and C2, respectively, for each algorithm.
Each table lists the instances (type and number of feasible
instances), the percent number of optimal solutions found
and the average computational time (in seconds) to find a
solution having the target value (optimal solution).

Table 1. Computational results for C1 class
instances.

Instance GRASP GRASP-PR
type # FS # OS(%) time # OS(%) time
GL 23 100.0 0.047 100.0 0.010
GH 27 100.0 0.054 100.0 0.014
RL 28 100.0 0.072 100.0 0.024
RH 33 100.0 0.046 100.0 0.047

The tables illustrate the effect of path-relinking on
GRASP. Even though it is a more expensive procedure in
terms of computational time, the path-relinking improved
the performance of GRASP for three instance types in C1
class and for one instance type in C2 class. These results
show that, in some cases, the GRASP-PR got the conver-
gence to the optimal solution faster than pure GRASP. Fur-

Table 2. Computational results for C2 class
instances.

Instance GRASP GRASP-PR
type # FS # OS(%) time # OS(%) time
GL 70 100.0 0.314 100.0 0.407
GH 70 97.1 0.384 100.0 1.630
RL 70 98.6 1.044 98.6 1.094
RH 20 100.0 0.747 100.0 0.204

thermore, GRASP with path-relinking found optimal solu-
tions in 340 instances while pure GRASP found optimal so-
lutions in 338 out of 341 instances tested.

In Table 1, we can see that the proposed GRASP with
path-relinking found optimal solutions for all instances.
The average execution times for algorithm proposed stayed
below 0.024 second whereas for pure GRASP the average
times were 0.055 second.

In Table 2, we show the results obtained for second cat-
egory of instances C2. We make the following observations
about this category. Pure GRASP found optimal solutions
in 227 out of 230 instances tested and the average execution
times were solved in less than 0.623 second. On another
hand, GRASP with path-relinking found optimal solutions
in 229 out of 230 instances tested and the average execution
times stayed below 0.834 second.

Table 3 lists all test problems for which pure GRASP did
not find optimal solutions. Besides instance name and value
of the optimal solution, the table lists the results found,
as well as the optimality gap, i.e. (100 × [zGRASP −
zexact]/zGRASP), in the GRASP solution. It should be
noted that, except for the new.RL 50 8.5 instance, where
pure GRASP did not find a feasible solution, the optimality
gap is small, i.e., notwithstanding the GRASP found so-
lutions within 16.67% of the optimal solution, these gaps
correspond to only one ring far from the optimal solution.
Furthermore, these solutions were obtained at most 1.031
seconds, in average, running 1000 iterations.

Table 3. Computational results for instances
where GRASP did not find optimal solutions.

Instance zexact GRASP gap(%) T1000

new.GH 50 3.4 5 6 16.67 1.031
new.GH 50 9.4 5 6 16.67 1.031
new.RL 50 8.5 6 – – 1.141

Unfortunately, for one instance of category C2, the

Table 4. Computational results for instances
where GRASP-PR did not find optimal solu-
tions.

Instance zexact GRASP-PR gap(%) T1000

new.GH 50 3.4 5 6 16.67 2.406

GRASP with path-relinking did not find optimal solutions.
Table 4 presents this instance. The heuristic obtained one
solution within 16.67% of the optimal solution. This gap
corresponds to only one ring far from the optimal solution.
Furthermore, this solution was produced at most 2.406 sec-
onds, on average, running 1000 iterations.

Finally, in table 5, we compare the results obtained by
GRASP-PR with the results existing in the literature. The
first two columns show instance class and number of fea-
sible solutions, the following columns give the number of
optimal solutions found by GRASP-PR, edge-based, cut-
based and node-based heuristics [6] and DMN procedure
[1]. The results show that GRASP-PR got better results
in terms of solution quality. We are not comparing com-
putational times because the experiments where performed
on different equipment but we believe that our algorithm is
very competitive with those in literature.

Table 5. Computational results for C1 and C2
class instances.

Instance GRASP-PR EB, CB, NB DMN
class # FS # OS(%) # OS(%) # OS(%)
C1 111 100.00 97.46 100.00
C2 230 99.57 – 98.26

6 Concluding remarks

In this paper, we presented a GRASP for the SONET ring
assignment problem and showed how the path-relinking
technique can be used to improve the performance of the
greedy randomized search. We described a new way to im-
plement path-relinking within a GRASP.

Extensive computational experiments were done with
benchmark instances for the SRAP in this paper. The
GRASP with path-relinking heuristic was shown to improve
the performance of a pure GRASP, previously described in
[2], both in terms of finding a solution faster and finding a
better solution for a fixed number of iterations.

Additionally we compared proposed algorithm with the
edge-based, cut-based and node-based heuristics proposed
in [6] and the procedure DMN introduced in [1]. The
GRASP with path-relinking was superior to the heuris-
tics described in [6] finding optimal solutions for 100.0%
of C1 class instances against 97.46%. For C2 class in-
stances GRASP with path-relinking found 99.57% against
the 98.26% found by DMN procedure [1].

References

[1] R. Aringhieri and M. Dell’Amico. Comparing metaheuristic
algorithms for the SONET network design problems. Jour-
nal of Heuristics, 11:35–57, 2005.

[2] L. de O. Bastos, L. S. Ochi, and E. M. Macambira. A relative
neighborhood grasp for the sonet ring assignment problem.
In International Network Optimization Conference - INOC,
pages 833–838, 2005.

[3] T. A. Feo and M. G. C. Resende. Greedy randomized adap-
tive search procedures. Journal of Global Optimization,
6:109–133, 1995.

[4] F. Glover. Tabu search and adaptive memory program-
ing: advances, applications and challenges. In R. S. Barr,
R. V. Helgason, and J. L. Kennington, editors, Interfaces
in Computer Science and Operations Research, pages 1–75.
Kluwer, 1996.

[5] F. Glover, M. Laguna, and R. Martı́. Fundamentals of scat-
ter search and path-relinking. Control Cybernetics, 39:653–
684, 2000.

[6] O. Goldschmidt, A. Laugier, and E. V. Olinick.
SONET/SDH ring assignment with capacity constraints.
Discrete Applied Mathematics, 129:99–128, 2003.

[7] M. Laguna and R. Martı́. GRASP and path-relinking for 2-
layer straight line crossing minimization. INFORMS Jour-
nal on Computing, 11:44–52, 1999.

[8] E. M. Macambira. Modelos e Algoritmos de Programação
Inteira no Projeto de Redes de Telecomunicações. PhD the-
sis, COPPE, Universidade Federal do Rio de Janeiro, Brazil,
2003. in portuguese.

[9] M. G. C. Resende and C. C. Ribeiro. Greedy randomized
adaptive search procedures. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, pages 219–
249. Kluwer Academic Publishers, 2003.

[10] M. G. C. Resende and C. C. Ribeiro. GRASP with
path-relinking: recent advances and applications. In
T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Meta-
heuristics: progress as real problem solvers, pages 29–63.
Springer, 2005.

