
Hybrid Adaptive Memory Programming using GRASP and Path Relinking for
the Scheduling Workover Rigs for Onshore Oil Production

Viviane de Aragão Trindade
Instituto de Computação

Universidade Federal Fluminense
Niterói - RJ - Brasil
vtrindade@ic.uff.br

Luiz Satoru Ochi
Instituto de Computação

Universidade Federal Fluminense
Niterói - RJ - Brasil

satoru@ic.uff.br

Abstract

There are many oil wells in onshore fields that need ar-
tificial lift methods in Brazil. These wells periodically need
some maintenance services that are performed by workover
rigs, avaliable on a limited number. The problem consists
in optimizing the workover rigs schedule by minimizing the
production loss associated with the wells that are waiting
for service. We propose some GRASP algorithms includ-
ing hybrid and adaptive versions to solve this problem. Ex-
perimental computational results illustrate the effectiveness
of the hybrid and adaptive versions to be above standard
GRASP in terms of solution quality.
Key words: hybrid Metaheuristics, intelligence heuristic,
adaptive algorithm.

1. Introduction

The metaheuristics or intelligent heuristics have been
shown to be one of the most efficient alternative to approxi-
mately solve NP-Complete and NP-Hard problems. Among
the different metaheuristics found in literature, some have
been detached like: Tabu Search (TS) [5, 6], Greedy Ran-
domized Adaptive Search Procedure (GRASP) [1, 3, 4, 8],
Variable Neighborhood Search (VNS) [7] and Hybrid Ge-
netic Algorithms (HGA), also known as Evolutionary Algo-
rithms (EAs) [10]. This papper has as its objective, to exper-
imentally develop and analyze different versions of GRASP
heuristics to solve a workover rig schedule for an onshore
oil production problem (SWRP). This is an existing prob-
lem in the northeast area of Brazil, where there are oil wells
that rely on artificial lift methods to make the oil surface. Oil
can be lifted by different techniques, which require special-
ized equipment. As time passes maintenance service is nec-
essary because of equipment failure, which is essential to
the exploitation of the wells [2]. This service is performed

by workover rigs, that are avaliable in a limited number be-
cause of the high cost of that equipment. The company in
charge of managing these workover rigs receives service or-
ders for some wells. The workover rigs schedule for the on-
shore oil production problem consists in finding for each pe-
riod the best schedule for avaliable workover rigs to attend
all wells demanding maintanance service, therefore mini-
mizing the oil production loss. The production loss is eval-
uated as the mean daily yield of the well under regular op-
eration, multiplied by the number of days its production
is interrupted [2]. The SWRP is a NP-Hard problem [2],
which justifies the development of heuristic algorithms. To
our knowledge there is only one proposal heuristic to solve
this problem, which uses VNS concepts [2]. However, the
instances used in [2] are not available, making it difficult
to compare with other proposals. In this paper we propose
the development and experimental analyzis of GRASP al-
gorithms to solve the SWRP. Nowadays this metaheuris-
tic is classified as one of the best heuristics techniques to
solve hard combinatorial problems. GRASP is an iterative
multi-start method, that means that its iterations are totally
independent, or that it does not use any kind of memory
[3]. Another important aspect shown in literature is that the
best metaheuristics versions normally are the hybrid ones
where different method concepts are combined in one sin-
gle algorithm [4, 5, 8, 9, 11]. The main goal of this paper
is to present hybrid GRASP versions including path relink-
ing concepts, making them adaptive by using memory be-
tween its iterations. GRASP algorithms proposals are pre-
sented in Section 2, computational results including an em-
pirical probability distribution of time-to-target value are re-
ported in Section 3. Concluding remarks are drawn in Sec-
tion 4.

2. Proposal Algorithms

The Greedy Randomized Adaptive Search Procedure -
GRASP [3] is an iterative multi-start procedure, which each

iteration consists of two phases: the construction phase and
the local search phase. The construction phase builds a fea-
sible solution, where the neighborhood is explored by lo-
cal search. The best solution for all GRASP iterations is re-
turned as the result. In the construction phase, a feasible
solution is built, one element at a time. At each construc-
tion iteration, the next element to be added is determined
by ordering all elements in a candidate list with respect to a
greedy function that measures the benefits of selecting each
element. The adaptive component of the heuristic arises
from the fact that the benefits associated with every element
are updated at each iteration of the construction phase to re-
flect the changes brought on by the selection of the previous
elements. The probabilistic component of GRASP is char-
acterized by randomly choosing one of the best candidates
from the list, but usually not the top candidate. This way of
making the choice allows for different solutions to be ob-
tained at each GRASP iteration. The solution found by the
construction phase of the GRASP metaheuristic is not guar-
anteed to be locally optimal. Therefore, the application of
a local search algorithm in order to obtain an improvement
of this solution is recomended. In this paper we propose
different versions of GRASP heuristics to solve the SWRP.
The propose algorithms are two constructive algorithms and
three local search algorithms. Each combination: construc-
tion + local search generates one GRASP version, result-
ing in six different versions. In a second stage we propose
a hybrid GRASP including a path relinking procedure for
the best of the six versions from the stage before. This hy-
brid version uses a memory to keep some information from
the previous iterations and uses those in the next ones, that
makes the GRASP become adaptive. Our main objective
is to evaluate the impact of each proposal in GRASP per-
formance. So we simulated some different possible config-
urations, analyzing experimental results in different ways.
Next, we describe each construction, local search and path
relinking proposal algorithm.

2.1. Constructive Algorithm 1 (C1)

This construction algorithm is based on the near-
est neighborhood insertion [11]. We define A greedy
function as: consider Rk a partial route that is un-
der construction to a workover rig k. The source is al-
ways the well where the workover rig is located at
the beginning of the planning. Consider pi, the newest
well added to Rk. So, for every well pj not yet se-
lected, the pj priority level for the Rk route is given
by PRI(pj , k) = [vj]/[tpi, pj + tej]; where vj repre-
sents the daily production of the well pj , tpi, pj rep-
resents the travel time spent to go from pi (the newest
well added to Rk) to pj , and tej is the expected time
to fix pj . The wells are arranged in descending prior-

ity order. Each workover rig k has a well candidate or-
der list CLk that is updated after each insertion. Thus, for
each list (workover rig) and each insertion of well, we cre-
ate a restricted candidate list (RCLk) coposed of the
best candidates, where the size of this restricted list is in-
put data [3]. To create different solutions, instead of select-
ing best candidate from RCLk all the time, a well from
RCLk will be selected randomly and inserted in Rk. Af-
ter that, each workover rig list is updated (includingRk) and
then we select the next well to a next workover rig. By al-
ternating the workover rigs, we espect to get in the end
balanced routes.

2.2. Constructive Algorithm 2 (C2)

In this algorithm, the priority is only the daily oil produc-
tion of each well, so, to each construction phase iteration,
only one Candidate List (CL) is created with all wells that
were not added to a route yet. The wells of CL are arranged
in descending daily production order. So, in each inserction
of a new well, a newRCL is formed and then one well from
RCL is picked randomly, just like in C1. But in C2, unlike
C1, the picked well is added to the workover rig that can ar-
rive the fastest to its, the objective being to minimize this
well’s production loss, knowing that this well is still one of
the wells that is not included with the biggest daily produc-
tion wells. This procedure is repeated until all wells that are
waiting for service are placed, or until all workover rigs are
not able to have another well added to its route in the plan-
ning time considered.

2.3. Local Search Algorithm 1 (LS1)

This Local Search (LS) executes two neighborhood pro-
cedures, that are repeated one after the other until the solu-
tion does not get any better in any of the neightbohood pro-
cedures. First of all, a structure with the nearby r neighbors
of each well pi is built (N(pi)), then we pass this structure
to the two neighborhood procedures (where r is an input pa-
rameter). Given a initial (base) solution, the first neighbor-
hood consists in exchanging each well pi that is in route Rk
with each well from N(pi) that is in the same route as pi.
After each exchange, the best solution obtained will be the
new base solution and we repeat the procedure for all other
wells. This procedure is repeated for all routes (workover
rigs). The second neighborhood is like the first one, but the
exchanges will be done with the wells of N(pi) that are in
a different route than the one that is pi.

2.4. Local Search Algorithm 2 (LS2)

Considering a well pk that is in the route Rk (workover
rig k), this local search procedure works as follows: the well

pk has its location tested in every possible position in all
other workover rigs that are different from k. The best lo-
cation (that produces the least production loss) will be con-
sidered to be the new base. If there is no improvement, this
well remains in the original position. This analyzis is done
for each well in every route.

2.5. Local Search Algorithm 3 (LS3)

This local search has also two neighborhood proce-
dures that are excecuted sequentially one after the other, un-
til there is no improvement. The first one (N1) checks for
each well pj that is in route Rk the best position on that
route. If a change improves a solution, we update the cur-
rent solution and analyze the next well in the route. This
procedure is done for every route. Then, with the so-
lution returned by N1 we begin the second neighbor-
hood procedure, which is exactly the LS2.

Having the construction and the local search algorithms,
the initial six GRASP versions are generated, they are
formed by the following combinations: G1 = C1 + LS1, G2
= C2 + LS1, G3 = C1 + LS2, G4 = C2 + LS2, G5 = C1 +
LS3 and G6 = C2 + LS3.

3. Adaptive Memory GRASP

One limitation of the GRASP, is the fact that it does not
have any memory between its iterations. In fact, at each
GRASP iteration, a new solution is generated without con-
sidering any information from the previous ones. Because
of that, it is called a multi-start heuristic. This paper pro-
poses an adaptive GRASP, using information about a set of
the best generated solutions found so far, called the elite
set (ES). The resulting solution of each GRASP iteration
is then compared with the worse solution of ES, updat-
ing this set whenever it is possible. This way, the GRASP
heuristic begins to use a memory that saves relevant in-
formation from previous iterations. The ES is used in the
proposal GRASP to make an intensive local search called
Path Relinking. The Path Relinking (PR) method was pro-
posed originaly for Tabu Search and Scatter Search meth-
ods [5, 6]. The procedure consists in analyzing all interme-
diate solutions between two good solutions, looking for a
third one that is better than the both extreme solutions. Nor-
mally a PR is used as follows. First a ES is saved, formed by
the best c distinct solutions found so far. After each r itera-
tions GRASP (where c and r are input parameters) a solu-
tion from a GRASP iteration is choosen, and it is called the
base solution (bs). Each solution from ES is called the tar-
get solution (ts). The PR analyzes all intermediate solutions
between a bs and a ts in one or both ways. The path relink-
ing procedure starts with one of these solutions (say bs) and

gradually transforms it into the other (ts) by swapping in el-
ements that are in the ts solution but do not belong in the
bs solution and swapping out elements that are in the bs so-
lutions but not belong in the ts solution. For each interme-
diate solution is we applied a local search algorithm (LS1
or LS2 or LS3) generating an improved intermediate solu-
tion (iis). We compare the iis with the worse solution from
current ES updating this set, if it is the case. This procedure
is repeated until a new swapping results in the target solu-
tion (ts). The PR analyzes then the search in the other way,
by just changing the two extreme solutions status (base and
target). The PR can be done for all solutions from ES or for
one of them randomly choosen. We propose two versions
using PR, called G7 and G8. Those consists in G6 plus the
PR method (G6 + PR), differentiated only by the number of
times that the PR is actived. In G7 the path relinking is acti-
vated when the current GRASP iteration is a multiple of 50
or when 50% of ES has been changed since the last execu-
tion of PR. In G8, the PR is executed only once at the end
of all GRASP executions.

4. Computacional Results

Although the literature presents contribution of the
SWRP [2] there is not an available set of test problems. We
randomly generated two sets of tests, varying the follow-
ing parameters: the number of wells; the daily production of
each well; the travel time between two wells and the plan-
ning time. In this work, to simplificate, we considered the
number of workover rigs fixed in 3 (k = 3). The num-
ber of wells is equal to: 50, 100, 200, 300, 400, 500, 700
and 1000. We generated two sets of instance (A and B) hav-
ing for each, all the cited instances above. In the fist set (A),
the mean value of travel time between two wells is consid-
ered bigger than the mean value of wells production. And
in the second one (B) the oposite occours. All GRASP ver-
sions, described in this work, were implemented in C, com-
piled with gcc and tested in an Athlon XP 2.4 GHz with
512 Mbytes of RAM. For each instance, each GRASP al-
gorithm was initially executed three times using the follow-
ing set of parameters:
a = 0.1 (RCL size in construction fase).
The GRASP stop criteria: Maximun Number of Itera-
tions : 200.
r ≤ 20 (referring to the nearby r neighbors from LS1).
At each GRASP execution we used the seeds: 3, 7 and 11.
Size of Elite Set: ES = 3 (to the versions G7 and G8).

4.1. Set of Tests A: Travel Time > Production

In the SWRP problem there are two factors that influence
the choice of the next well to be added in a partial route: the

total travel time of the current route until the next candi-
date well and the candidate well’s dialy production. The ta-
ble 1 presents the computational results of G1 to G6 ver-
sions, to the instances of A. As the metaheuristics, includ-
ing GRASP, can generate diferent solutions at each execu-
tion, even using the same input parameters, each instance
was executed three times for each algorithm. In every ta-
ble that has the algorithm performance analyzed based on
solution quality (mean solution quality), the showed values
represent the percentile deviation-mean between the best(t)
and the mean solution from the associated algorithm (pre-
sented by the equation: (mean solution - best)divided by the
best; where best(t) = best solution of the instance t consid-
ering all algorithms.

Inst. G1 G2 G3 G4 G5 G6
50 14,33 17,05 1,95 1,27 0,48 0
100 27,20 42,35 3,55 1,05 0,16 0
200 48,63 64,90 6,08 1,59 2,73 0
300 65,90 81,67 4,74 1,53 2,56 0
400 86,63 94,75 6,38 2,40 3,29 0
500 99,80 110,72 6,01 2,04 1,65 0
700 116,06 123,73 4,32 1,40 1,95 0
1000 141,59 149,62 5,67 1,39 3,16 0

Table 1. Average solution from each heuristic

From the results showed in table 1 we can verify that
the G6 version (using the constructive algorithm (C2) and
the local search (LS3)) has presented the best mean solu-
tion quality results followed by the versions G4, G5 and G3
that had similar results. The G1 and G2 versions presented
a very poor performance compared to the others, indicating
that the LS1 is less efficient then the others local search al-
gorithms. Concerning the computational times, besides this
datas are not ilustrated in this work, it was observed that
the average results are similar, and there isn’t any discrep-
ancy between them. In general terms, the pair (G1 and G2)
was faster, followed by the pairs (G3 and G4) and (G5 and
G6).

4.2. Set of Tests B: Production > Travel Time

The second set of test average results can be observed in
the table 2.

The table 2 results show, again, a superiority of the G6
version based on the solutions quality. A ordered ranking
based on mean performance considering all sets of test (A
and B) and the six version is showed in the table 3.

Inst. G1 G2 G3 G4 G5 G6
50 11,26 16,18 1,40 4,41 0 0,78
100 30,94 27,39 4,37 3,88 0 1,12
200 62,99 62,13 4,49 4,02 0,70 0
300 74,66 83,58 2,98 2,78 0 0,80
400 108,51 105,34 5,73 3,25 2,26 0
500 124,89 113,39 4,36 0,72 2,28 0
700 161,79 164,42 6,52 4,10 3,39 0

1000 208,19 221,56 4,44 2,56 3,20 0

Table 2. Average solution from each heuristic

Ranking GRASP Deviation-Mean
1 G6 0,17%
2 G5 1,74%
3 G4 2,40%
4 G3 4,56%
5 G1 86,46%
6 G2 95,42%

Table 3. Mean ranking from GRASP algo-
rithms based on the both sets of test (A and
B).

4.3. Compared results from GRASP and Path Re-
linking

In this section we include a Path Relinking (PR) proce-
dure in the best GRASP version generated until now (G6),
proposing the version G7 = G6 + PR and G8 = G6 + PR2,
where the differences have been explained before. Because
of the results similaritie obtained and the increase of the
new versions execution times using the current stop crite-
ria, we ilustrated only the results that have 500 wells or less.
The impact of the PR inclusion in GRASP can be analyzed
in tables 4 and 5.

Inst. Deviation-Mean Time-Mean
G6 G7 G8 G6 G7 G8

50 0,74 0 0,52 0 0 0
100 0,16 0 0,13 0 78 17
200 0,23 0 0,004 163 2.804 468
300 0,82 0 0,47 819 11.244 2.707
400 0,49 0 0,34 2.089 37.403 8.619
500 0,12 0 0,12 4.342 91.468 20.757

Table 4. Set of Tests A: Average solution
value from G6, G7 and G8 based in deviation-
mean related to the best (in %) and the mean
execution time (in seconds).

Inst. Deviation-Mean Time-Mean
G6 G7 G8 G6 G7 G8

50 1,00 0 0,89 0 0 0
100 0 0 0 0 77 13
200 1,86 0 0,23 133 2.155 465
300 0,14 0 0,02 733 10.284 2.602
400 0,31 0,07 0 2.080 37.599 7.889
500 0,06 0 0,04 4.278 91.826 20.381

Table 5. Set of Tests B: Average solution from
G6, G7 adn G8 based in deviation-mean re-
lated to the best (in %) and the mean execu-
tion time (in seconds).

The average results presented in tables 4 and 5 show that
the PR inclusion brings significant improvements in final
GRASP solution quality, indicating a clear superiority of
the versions with Path Relinking. This proves, once again,
that hybrid versions of GRASP metaheuristics can have bet-
ter performance than traditional GRASP versions, as G6. In
relation to the G7 and G8 computational times, as we ex-
pected, there is an increse in both of them. However, the av-
erage time analysis must be made carefully, because of the
current stop criteria (maximum iteration number) can harms
some versions where there are more work for each itera-
tion, but demands a least number of iterations to get a tar-
get value, as we believe that is the case of G7 and G8. This
analysis are presented in next section of this paper.

4.4. Empirical probability distributions of time-to-
target value of GRASP algorithms

In this section, the main objective was to verify the em-
pirical distribution of the random variable time to target so-
lution value (i.e. find a solution as well as the target or bet-
ter in fuction of time) in different instances. To evaluate the
performance of the proposed algorithms, we fixed a solu-
tion target value and ran each algorithm 100 times, record-
ing the running time when a solution with the quality as
good as the target value or better is found, or a time limit
was hit (that was calculated near three times the mayor exe-
cution time considering all GRASP versions for the instance
that the analysis involve). This target value was choosen as
sub-optimum value or a value near the optimum soltuion (in
our case near the best) for each instance. To plot the empir-
ical distribution for each instance, we associated the execu-
tion time ti of the i− th sorted running time to a probabil-
ity pi = (i − 0.5)/100 and the points zi = (ti; pi) were
plotted for i = 1; ...; 100 [1]. This analysis was made for
every instance here analyzed, but because the behavior was
very similar between them, we only show the graphs of the
100A and 100B instance. In the figure 1, each graphic line
represents the computational time demanded to each algo-

rithm hit the target value. A simple analysis of the results
can be done considering the alignment of the curves: left
most aligned curves indicate faster convergence of the al-
gorithm while right most aligned curves indicate an algo-
rithm with slower convergence. In this figure, it can be ob-
served that the most sofisticated versions (G6 and G7) de-
mand a similar computational time, or even minor than the
other versions. In the first graphic from figure 1 the ver-
sions G1 and G2 weren’t presented because those versions
couldn’t converge in most of the cases of the 100 execu-
tions with the time limit equal to 86 seconds. In the second
graphic the version G8 was not considered because this ver-
sion only uses the PR procedure in the final of G6. The sec-
ond graphic shows that the G7 version always hits the tar-
get value, in the other hand, G6 only hits it in about 80% of
the executions.

5. Conclusions

This work presented some proposals to improve the
GRASP performance applied to a solution of a real problem
that generates optimized routes to a scheduling workover
rigs for onshore oil production problem in the northeast area
of Brazil. The main goal was, inicialy, to analyze the influ-
ence in the final GRASP performance of the following al-
gorithms: construction phase, local search phase and path
relinking method. It shows that GRASP strongly depends
especially on the local search phase and that a good con-
struction and local search combination (G4, G5 and G6)
can produces very competitive aproximated solutions. In
a second phase, the paper showed the performance of hy-
brid versions integrating path relinking concepts inside a
GRASP structure. The empirical results obtained show that
this union can improves significantly the final GRASP per-
formance. Beyond the Path Relinking module is considered
a way to effects intensive searches between two extreme so-
lutions good quality, a good performance of the G7 and G8
adaptive versions can in part be justified by the use of a
memory to keep relevant informations obtained in previ-
ously iterations through elite set (ES). Finally, other con-
tribution of this paper is the empirical probability distribu-
tions where the main goals are to verify the robustness of
these heuristics and also to show an alternative stop crite-
ria to the GRASP.

References

[1] R. M. Aiex, M. G. Resende, and C. C. Ribeiro. Probabil-
ity distribution of solution time in grasp: an experimental in-
vestigation. Journal of Heuristics, 8(3):343–373, 2002.

[2] D. Aloise, C. T. M. Rocha, J. C. R. Filho, L. S. S. Moura, and
C. C. Ribeiro. Scheduling workover rigs for onshore oil pro-
duction. To appear in Discrete Applied Mathematics, 2005.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

P
ro

ba
bi

lit
y

Time (sec)

Target

Value = 1.876.146

G3
G4
G5
G6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

P
ro

ba
bi

lit
y

Time (sec)

Target Value = 62.996

G6
G7

Figure 1. Empirical convergence of GRASP
heuristics for the instance 100B and 100A, re-
spectively.

[3] T. Feo and M. G. Resende. Greedy randomized adaptive
search procedure. Journal of Global Optimization, 6:109–
133, 1995.

[4] P. Festa and M. G. Resende. Grasp: An annotated bibliog-
raphy. In C.C. Ribeiro and P. Hansen, editors. Essays and
surveys in metaheuristics, Kluwer, pages 325–367, 2002.

[5] F. Glover and M. Laguna. Tabu search. Kluwer Academic
Publishers, 1998.

[6] F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter
search and path relinking. Control and Cybernetics, 39:653–
684, 2000.

[7] P. Hansen and N. Mladenovic. Variable neighborhood
search. Computers and Operations Research, 24(11):1097–
1100, 1997.

[8] G. C. Silva, S. L. Martins, and L. S. Ochi. Experimental com-
parison of greedy randomized adaptive search procedures for

the maximum diversity problem. In Lecture Notes on Com-
puter Science (LNCS), 3059:498–512, 2004.

[9] M. J. F. Souza, N. Maculan, and L. S. Ochi. A grasp-tabu
search algorithm for solving school timetabling problems.
In Combinatorial Optimization Book Series, Metaheuristics:
Computer Decision-Making, Kluwer, 15(31):659–672, 2003.

[10] E. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Y.
Potvan. Adaptive memory programming : A unified view of
metaheuristics. European Journal of Operational Research,
135:1–16, 2001.

[11] E. G. Talbi. A taxonomy of hybrid metaheuristics. Journal
of Heuristics, 8:541–564, 2002.

