
 
A Relative Neighbourhood GRASP for the SONET Ring Assignment 

Problem 
 

Lucas de Oliveira Bastos 1, Luiz Satoru Ochi 1, Elder M. Macambira 2 
1 Instituto de Computação, Universidade Federal Fluminense 

Address: Rua Passo da Pátria, 156, 24210-240, Niterói – RJ – Brasil 
Email: {lbastos, satoru}@ic.uff.br 

2 Departamento de Estatística, Universidade Federal da Paraíba 
Address: Cidade Universitária, 58051-900, João Pessoa – PB – Brasil 

Email: elder@de.ufpb.br 
 

January 2005 
 

Abstract 

We consider the SONET ring assignment problem, a combinatorial optimization problem that arises in 
telecommunications networks design. In this problem, each customer has to be assigned to exactly one 
SONET ring and a special ring interconnects the others rings together. A capacity constraint on each ring is 
also imposed. The problem is to find a feasible assignment of the customers minimizing the total number of 
rings used. We describe a greedy randomized adaptive search procedure (GRASP) for the SONET ring 
assignment problem. The procedure is based on a relative neighbourhood structure and the use of a variable 
objective function. We show extensive empirical evidences to the effectiveness of our algorithm in practice. 
These results indicate that the proposed GRASP implementation compares favorably to greedy methods and 
implementations of tabu search, scatter search and path relinking previously proposed for the problem. For 
most benchmarks instances in the literature, we obtained solutions that are either optimal or very close to it. 
 
keywords SONET Ring Assignment Problem, Graph Partitioning, Metaheuristics, GRASP. 
 
 
1 Introduction 
Consider the following node-partitioning problem. We are given an undirected graph G = (V, E) and a 
positive integer B. Associated to each edge (u, v) in E there is a non negative integer duv. A feasible solution 
of the problem is a partition of the vertices in G into disjoint sets V1,V2,…,Vk such that:  
 

∑
∈

≤
][),(

)(
jVGvu
uv Bdi , for all j ∈ {1,…,k}, and          (1) 

 

∑∑
<∈=

≤
vuVvu

uv

k

j j

Bdii
|)(),(1

)(
δ

,           (2) 

 
where G[Vj] is the graph induced by Vj in G and δ(Vj) is the set of edges with exactly one extremity in Vj. The 
goal is to find a feasible solution that minimizes the size of the partition, i.e., the value of k. 

This graph partitioning problem is also known as the SONET (or SDH) ring assignment problem, or 
SRAP for short. The SRAP was investigated recently by Goldschmidt et al. in [3]. In their paper the authors 
motivated the study of the problem by showing its relevance for the design of fiber-optics telecommunication 
networks using the SONET (Synchronous Optical NETwork) or SDH (Synchronous Digital Hierarchy) 
technology.  



In this context, the vertices of graph G = (V,E), with |V| = n, are associated to client sites while the edges 
are associated to the existence of traffic demand between pairs of clients. The edge weights measure the actual 
demand of communication among clients. Given a feasible solution to the graph partitioning problem stated 
above, the vertices in each subset of the partition form a local ring or simply a ring. Due to physical 
limitations on the equipments used in building the network, the total demand in each ring must not exceed a 
constant B. Besides, the total demand between clients in different clusters is handled by an additional ring 
called the federal ring. The connection of a local ring to the federal ring is made possible through a device 
known as a digital cross-connect (DCS). Since the capacity of the federal ring is also bounded by B, the sum 
of the weights of the edges in the multicut corresponding any feasible solution cannot be larger than that 
amount. Finally, because the DCS's are by far the most expensive equipments needed to implement a network, 
a basic problem in the design of low-cost SONET networks asks for a solution that minimizes the number of 
local rings. One can easily check that the graph partitioning problem discussed at the beginning of this section 
correctly models the latter problem. 

We refer to Goldschmidt et al. [3] for a more detailed discussion on the architecture of SONET networks 
and a review of the literature on the SRAP. In their work the authors proved that SRAP is NP-hard. They also 
proposed three different greedy heuristics to solve it. Another work on heuristics for SRAP can be found in 
[1] where tabu search, path relinking and scatter search metaheuristics are proposed. Recently, Macambira [4] 
proposed many integer programming formulations and exact methods to solve SRAP.  

This paper focus on the solution of SRAP via metaheuristics. We present a GRASP for this problem, 
which makes use a relative neighbourhood structure. In Section 2, we describe the construction and local 
search phases, and in Section 3, we present computational results for benchmark instances of the problem. 
Concluding remarks are made in Section 4. 

 
 

2 GRASP heuristic 
GRASP [2] is a multi-start procedure, where different points in the search space are probed with local search 
for high-quality solutions. Each iteration of GRASP consists of the construction of a randomized greedy 
solution, followed by a local search, starting from the constructed solution. The best solution from all 
iterations is returned as result.  

In the remainder of this section, we describe in detail the phases of the GRASP for the SRAP, i.e., the 
GRASP construction and local search phases. To describe the construction phase, one needs to provide a 
candidate definition (for the restricted candidate list) and an adaptive greedy function, and specify the 
candidate restriction mechanism. For the local search phase, one must define the neighbourhood and specify a 
local search algorithm. 
 

2.1 Construction phase 
We first notice that it is possible for GRASP proposed to return infeasible solutions. Of course this must be 
allowed since, sometimes, we cannot decide in reasonable computing time if the instance has a solution or 
not. Even when the construction phase discovers that the instance is feasible, infeasible solutions can be 
visited. 

The goal here is to allow more flexibility to move along the search space. However, the objective 
function has been modified to turn feasible solutions more attractive than infeasible ones. To explain the 
changes in the objective function, we define the following value associated to a feasible solution S with vertex 
set V1,…,Vr: 

 

                                                 ,                                            (3) 









= ∑∑

<∈= vuVvu
uv

r

j j

dBN
|)(),(1

,0max
δ

 
where BN indicate the total traffic through the federal ring. Now, the cost of this solution in the modified 
objective function is computed by the formula:  



 
                                            z = rB (feasible solution)  or,                                                     (4) 

 
                                         z = 2r + BN (unfeasible solution).                                                 (5) 

 
We now turn our attention to the construction phase of GRASP. The algorithm is an adaptation of the 

three greedy heuristics presented in [3] to include randomization. It always starts with a solution containing n 
rings with only one vertex assigned to it. Those rings are feasible since otherwise the instance itself is 
infeasible. Therefore, the only constraint that can be violated is the one that imposes a limit on the demand on 
the federal ring. 

At each iteration, the union of two rings into a single one is considered. Such an union is accepted only if 
the resulting ring is feasible. Clearly, this operation reduces the amount of demand on the federal ring. The 
greedy choice is guided by the demands on edges which are in the multicutset of the rings. The randomization 
will not force us to pick the best edge (edge-based heuristic), best cut (cut-based heuristic) or the best node 
(node-based heuristic). Instead, the selected edge, cut or node is chosen randomly among the best candidates 
in the restricted candidate list with smaller demand. 

We developed a new algorithm for the construction phase trying to improve the results generated by 
greedy heuristic randomized below. This new proposal is described as follows. 

The aim of the Relative Neighbourhood Heuristic (RNH), introduced here, is to establish sets of 
neighbour localities according to a certain criteria to maintain in same rings. The criteria used here establishes 
that two localities are considered relative neighbours if they directly share the bigger demand among all their 
common demands. After this step, all neighbour localities are gathered together in a ring. This procedure 
generates at least a ring and at most (n/2) rings, being n the number of localities of the problem. Remaining 
locations are then placed in a ring with probability given by p = f * dem(i, a) where f is a random factor and 
dem(i, a) is the total traffic between locality i and the ring a. After this, RNH tries to merge rings the same 
way cut-based heuristic does. We refer to Goldschmidt et al. [3] for more details on cut-based heuristic. 

The steps of the construction algorithm are summarized in Figure 1. 
 

2.2 Local search phase 
After a solution is constructed, a local search phase should be executed for attempting to improve the initial 
solution. The local search phase is based on two types of neighbourhoods.  

The first neighbourhood considers the possibility of moving every vertex u from its ring to any of the 
existing rings different. The incumbent solution is initialized with the solution obtained by the construction 
phase. Each vertex u is moved from the ring s to the ring t. We observe that moving u from s to t modifies the 
traffic values and a new solution z(.) is computed. If for each triple (u,s,t), the value z(.)  has been improved, 
then they are interchanged, and a new incumbent solution is created. 

The second neighbourhood considers all possibilities of exchanging pairs of vertices among different 
rings. If no exchange improved the value z(.), then the local search is terminated. Otherwise, after the 
elements that provides minimum z(.) are interchanged, a new incumbent solution is created and the local 
search is performed again. The neighbourhoods are inspected in that order as it is suggested in the algorithm 
in Figure 2. 
 

3 Computational results 
In this section, we illustrate the use of GRASP on randomly generated test problems. All tests were run on a 
PC desktop equipped with a 1700 MHz Pentium IV processor and 256 Mbytes of RAM under Linux 
operating system. The GRASP code is written in C ++ language. 

Before we describe the experimental results, we must comment about instances used. The set of instances 
is divided into two categories. Instances in category C1 are taken from [3] and correspond to instances type 1 
and 2 in that paper. Category C2 is composed of all instances tested in [1] excluding those already in C1. 

 



procedure RNH( ) 
01 //-- Generating neighbourhood information: 
02 for each edge (i, j) do 
03   if weight(i, j) >= max(largerEdge(i), largerEdge(j)) 
04     setAsNeighbors(i, j); 
05 //-- Generating Rings from neighbourhood information: 
06 for each pair (i, j) of localities do 
07   if areNeighbors(i, j)  
08     mergeInARing(i, j); 
09 //-- Placing remaining locations: 
10 for each i = nextDesalocatedLocality( ) do 
11   placeInARing(i); 
12 //-- Merging rings: 
13 for each pair (i, j) of rings do 
14   if canMerge(i, j) 
15     mergeRings(i, j); 
end procedure 

 
Figure 1. Pseudo-code for Relative Neighbourhood Heuristic. 

 

In total, there are 111 instances in C1 and 230 in C2. Within each category, instances are divided into 
geometric and random ones and, then, further divided into those having low and high ring capacities, 
respectively, 155 Mbs and 622 Mbs. These characteristics of an instance can be deduced from its name. 
Instance names always start with two letters. The first letter is either “G” or “R” meaning that the instance 
belongs to the geometric or the random subdivision, respectively. The second letter is either “L” or “H”, 
depending if the ring capacity is 155 Mbs or 622 Mbs, respectively. For more details on how those instances 
were generated and their properties, we refer the interested reader to the original papers where they were 
introduced. 
 

procedure LS( ) 
01 //-- Applying First Neighbourhood: 
02 do { 
03   for each node belonging to the lesser ring do  
04     sendItToTheBestRingThatCanHoldIt( ); 
05 } until couldNotMoveANode; 
06 //-- Applying Second Neighbourhood: 
07 for each ring i do 
08   for each ring  j do 
09     for each node n belonging to i do { 
10       tryToInterchange(n, nodesOf( j)); 
11       if solutionIsImprooved( ) 
12         restartLocalSearch( ); 
13     } 
end procedure 

 
Figure 2. Pseudo-code of the local search procedure. 

 



The tests were processed using 1000 iterations for each instance and each one was executed 10 times with 
different seeds. Harder instances were executed until find optimal solution or up to 1 million iterations. 
Macambira [4] implemented an exact algorithm that provided optimal solutions for the two categories C1 and 
C2. 

In Tables 1 and 2, we show the results obtained for first category of instances C1 and C2, respectively. In 
these tables, the first column shows instance type according to its characteristics as explained above. The 
second column tells the demand constraint for each ring. Third column brings the number of feasible 
instances in each category and type. Fourth and fifth columns show the absolute and percent number of 
feasible solutions found by GRASP. The next two columns show these numbers for optimal solutions found. 
Finally, last column shows average computational time in seconds. 

In Table 1, we can see that the proposed GRASP found optimal solutions for all instances. The average 
execution times for GRASP were less than 0.08 second. 

 

Table 1: Computational results for C1 class instances. 

Instances Feasible solutions Optimal solutions 
Type B (Mbs) # FS # FS - G # FS - G (%) # FS - G # FS - G (%) Avg. time (s) 
GL 155 23 23 100.0 23 100.0 0.047 
GH 622 27 27 100.0 27 100.0 0.054 
RL 155 28 28 100.0 28 100.0 0.072 
RH 622 33 33 100.0 33 100.0 0.046 
 

In Table 2, we show the results obtained for second category of instances C2. We make the following 
observations about this category: GRASP found optimal solutions in 225 of the 230 test problems and the 
average execution times for GRASP were less than 2.6 seconds.  
 

Table 2. Computational results for C2 class instances. 

Instances Feasible solutions Optimal solutions 
Type B (Mbs) # FS # FS - G # FS - G (%) # FS - G # FS - G (%) Avg. time (s) 
GS 155 70 70 100.0 70 100.0 0.371 
GL 622 70 70 100.0 67 95.7 0.636 
RS 155 70 69 98.6 68 97.1 1.425 
RL 622 20 20 100.0 20 100.0 2.519 
 

Table 3. Test problems for which GRASP did not find optimal solutions. 

Instances zexact zGRASP gap (%) It. to best Time to best Total time 
new.GH_50_3.4 5 6 16.67 811 1.216 1.500 
new.GH_50_9.4 5 6 16.67 595 0.536 0.921 
new.GH_50_9.7 5 6 16.67 407 0.687 1.688 

 new.RL_15_2.7 3 4 25.00 1 0.001 0.140 
 

Table 3 lists all test problems for which GRASP did not find optimal solutions. Besides iterations and 
CPU time to find the best solution, the table lists the total time to run the 1000 iterations, as well as the 
optimality gap (100[zGRASP – zexact / zGRASP) in the GRASP solution. It should be noted that the optimality gap 
is small, i.e., notwithstanding the GRASP found solutions within 25% and 16.67% of the optimal solution this 



percents correspond to only one ring far from the optimal solution each. Furthermore, these solutions were 
obtained at most 1.7 seconds in average. 

 

4 Concluding remarks 
In this paper, we have studied the SONET ring assignment problem. A heuristic method for solving this 
problem was proposed. The method, a GRASP, was described in details. The quality of the heuristic solutions 
can be measured with a lower bound produced by exact method.  

Computational results obtained for benchmark problems illustrated that the GRASP heuristic is quite 
efficient to find optimal solutions and good solutions for SRAP. So, the GRASP heuristic is competitive with 
the best heuristic in the literature in terms of solution quality. On these problems that were not possible to find 
optimal solutions, the average deviations in percent of the solution obtained by GRASP was less than 25%. 
For all instances, the best solution was found in less than 0.7 second in average. 
 

References 
[1] R. Aringhieri and M. Dell’Amico. Solutions for the SONET ring assignment with capacity constraints, in 
Proc. of the 4th Metaheuristic International Conference, Porto, Portugal, 2001. 
 
[2] T. A. Feo and M. G. C. Resende, Greedy randomized adaptive search procedures, Journal of Global 
Optimization, 6:109-133, 1995. 
 
[3] O. Goldshmidt, A. Laugier and E. V. Olinick, SONET/SDH ring assignment problem with capacity 
constraits, Discrete Applied Mathematics, 129:99-128, 2003. 
 
[4] E. M. Macambira, Modelos e algoritmos de programação inteira no projeto de redes de telecomunicações, 
Tese de doutorado, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de 
Janeiro, maio, 2003. 
 


	Abstract
	1Introduction
	
	
	3Computational results


	Feasible solutions
	Optimal solutions
	Type

	# FS - G
	# FS - G (%)
	# FS - G
	# FS - G (%)
	Feasible solutions
	Optimal solutions
	Type

	# FS - G
	# FS - G (%)
	# FS - G
	# FS - G (%)
	Time to best
	4Concluding remarks
	References




