
On Improving Evolutionary Algorithms by Using Data Mining for

the Oil Collector Vehicle Routing Problem

Fábio Dalboni, Lúcia M. A. Drummond

and Luiz Satoru Ochi

Department of Computer Science - Fluminense Federal University

Rua Passo da Pátria, 156, Bloco E, Niterói, Rio de Janeiro, 24210-240, BRAZIL

e-mail: {lucia,satoru}@dcc.ic.uff.br

April 22, 2003

Abstract

This paper presents some proposals to improve the performance of an evolutive algorithm
applied to a problem known as the “Oil Collector Vehicle Routing Problem” (OCVRP) used in
a Brazilian oil company to collect oil in artificial lift wells. This paper focus on the analysis of
evolutive algorithms added with procedures of local search and data mining. Three algorithms
were developed: a basic model of genetic algorithm (BGA), another using additional procedures
of local search (GA1) and a third that employed procedures of local search and data mining
(GA2). Computational results show that the algorithm GA2 outperforms the other versions
concerning the quality of solutions, indicating that the inclusion of a data mining procedure can
significantly improve the performance of this kind of metaheuristic.

Keywords: Evolutionary Algorithms, Data Mining, Vehicle Routing Problem.

1 Introduction

Concerning the oil exploitation of onshore wells there is a class of them called artificial lift wells
where the use of artificial elevation methods to exploit oil is necessary. In this case a fixed system
of beam pumping is used when the well has a high productivity. Because the product is not
renewable, the quantity of oil diminishes until it becomes economically unfeasible to keep the
equipment allocated to that location permanently. The oil exploitation of wells of low productivity
can be done by mobile equipment coupled to a truck, that visits these wells to exploit oil. Usually,
the collector mobile is not able to visit all these wells in a unique day. In this way this problem,
called the Oil Collector Vehicle Routing Problem (OCVRP), can be described as a vehicle routing
problem beginning and finishing at a local origin, known as the oil treatment station, visiting all
wells of a subset J of N , where N is the set of wells, aiming the maximization of the quantity of
collected oil without violating the constraint of time to cover the tour [2].

The OCVRP can be associated with a symmetric graph G(N,E), where each vertex represents
a well and the edges correspond to the roads existing between each pair of wells. Each vertex j ∈ N
has a level of oil qj and each edge {i, j} of E has an associated value tij that represents the time
to cover this edge.

The OCVRP can be considered as a generalization of the Travelling Salesman Problem (TSP)
and is classified as a NP-hard problem. In literature, to our best knowledge there is only one paper
about the OCVRP, in which the authors present a basic genetic algorithm for solving this problem

1

[2]. There are similar problems to the OCVRP such as the travelling purchaser problem [6], the
prize collecting problem [3] and the orienteering problem [8]. Because of the high computational
complexity of the OCVRP, approximate methods or heuristics are good alternatives to find solu-
tions of good qualities for this problem. The literature has shown that this kind of problem can
be solved efficiently through evolutive metaheuristics [5] [10]. In this work, three versions of evo-
lutive algorithms are proposed to solve the OCVRP. Initially a basic GA is developed (BGA) and
then other versions including procedures of local search (GA1), and local search with data mining
(GA2) are proposed. In Section 2 the proposed algorithms are presented. Section 3 presents the
computational results. Finally, Section 4 concludes the paper.

2 Evolutive Algorithms

Evolutive algorithms and more specifically its most popular model, genetic algorithms, are itera-
tive heuristic procedures where at each iteration a population of solutions is generated. In these
algorithms, the process of generation of new solutions are usually done through combinations of
existing solutions. In case of GAs, the usual reproduction operators are known as mutation and
crossover.

GAs in particular are techniques already very known in literature and are used to solve prob-
lems considered hard in several areas, although they have not shown to be much efficient to solve
combinatorial optimization problems of high computational complexity in their basic form.

In order to improve the performance of GAs, researchers have proposed variations of GAs such
as memetic algorithms [9], scatter search [8], and population heuristics [4]. Many papers propose
the use of procedures of local search to improve the performance of GAs.

In this paper we propose not only a basic genetic algorithm for solving the OCVRP but versions
incorporated with procedures of local search and data mining as well.

2.1 Basic Genetic Algorithm (BGA)

In this algorithm, concepts of the basic version of GAs were employed. The steps of representation
of a solution, generation of a initial population of solutions, evaluation of solutions (fitness function),
reproduction of new solutions and stopping criterion are described as follows.

In order to represent a solution, a list of integer numbers of variable size, whose maximum
size is n, where n = |N | represents the number of wells existing with enough oil level to justify
a visiting of the collector vehicle, is used. The list is initiated with zero (origin i = 0) and each
integer number of the list is associated with a well. The position of a well in this list represents
its order in the visiting. Thus, a solution composed of five wells to be visited from 0, could be
0-6-3-4-5-2-0. In this solution the visiting would occur in the following order: 6,3,4,5,2.

To generate a set of feasible initial solutions, a criterion based on the priority of visiting of
each well j not yet visited is used. This priority is represented by the quotient priority(i, j) =
(level(j)/time(j)) where level(j) and time(i, j) represent respectively the level of oil available in
j and the time spent to travel from the well i included more recently to the well j in the partial
solution. Thus, let i be the most recently included well in the solution (that initiates with vertex
zero), a candidate list (CL) composed of all wells not yet selected is created and from it the k best
candidates are selected, where k is an entry parameter, what constitutes a restricted candidate
list(RCL). From the RCL a vertex is chosen randomly.

This procedure is repeated generating new lists RCL until a complete solution is reached. This
random choice on RCL allows to generate different initial solutions of OCRL.

The goal of this problem is the maximization of the oil volume collected in the visited wells
respecting the time constraint to conclude the route. The fitness of a solution is measured by the
objective function of the problem. For each reproduction phase, the classical operators of mutation
and crossover were employed.

2.2 Genetic algorithms with local search (GA1)

In basic genetic algorithms such as the BGA, the inefficiency of operators such as crossover to
generate local optimal solutions of good quality in combinatorial problems is well known.

One possibility to reduce or eliminate this limitation would be the replacement of the operator
crossover by a more efficient one or the addition of procedures of local search in BGA.

In this context, we propose a new version of GA, called GA1, using a nearest neighborhood
heuristic (NNH) instead of the operator crossover and an additional procedure of local search.

The algorithm NNH generates a solution (offspring) from p solutions (parents) of the current
population, where p ≥ 2. Chosen p parents, for each vertex (well) belonging to at least one parent,
a list of its adjacent vertexes (neighbors) in the p vertexes is built. To generate an offspring from
an origin i = 0 the following steps are executed. Considering the vertex most recently allocated in
the solution, called current, the nearest vertex of its adjacent list is selected. If it is already present
in the partial solution, the next nearest is chosen. If the list empties, a vertex not yet allocated is
selected randomly. To generate more than one offspring, we can adopt a restricted candidate list
(RCL) composed of the s nearest neighbors of current, from which a vertex is chosen randomly.
This random choice allows p parents to generate different offspring’s.

In the local search procedure here proposed, for a feasible solution of the problem (base solution),
for each vertex k of this solution a list lk of the r closest neighbors not present in the current
solution is created. Then, from the base solution, a replacement of a vertex k is executed one at
a time, exchanging it with one of the list lk. At each exchanging, the fitness is figured out and
the best solution may be updated. In order to accomplish the next exchange the base solution is
re-considered again. The values p, s and r are entry parameters.

The local search procedure is executed whenever the GA updates the best solution.
The stopping criterion usually adopted is the maximum number of iterations of GA and/or the

number of consecutive iterations without improvement of the best generated solution so far.

2.3 Genetic algorithm with local search and data mining (GA2)

Concerning the improvement of GAs, one possibility is to take advantage of the information of the
best feasible solutions generated so far (elite solutions).

To implement this idea, schemata notions could be used, where part of the genes of a chromo-
some of the GA would be fixed. However, few practical contributions exist because of the difficulty
of definition of the way and the moment a gene should be fixed to a constant value to improve the
performance of the algorithm.

In this paper, the use of data mining concepts is proposed in order to obtain relevant information
found in the best generated solutions by the GA.

The inclusion of the Data Mining procedure aims to improve the performance of the GA. This
procedure was based on the Apriori algorithm proposed by Rakesh Agrawal [1], but with some
adaptations that turned it more efficient to our proposals.

The adaptations allowed for the data mining algorithm to recognize the most usual sequences
of vertexes (wells) belonging to the elite set considering the different orders of theses wells in these
sequences [1].

Each generated sequence of vertexes (wells) that belongs to the elite set and that satisfies the
support, given as an entry parameter of the program, corresponds to an itemset [1].

The data mining procedure is executed whenever the best solution is updated by the iterations
of the GA.

In the following step, after the execution of the data mining procedure, each solution of the
current population is analyzed and the feasibility of inclusion of each itemset generated is verified.
If the included itemset does not result in an improvement in the fitness of the solution, the previous
state is recovered and the following itemset is verified. An itemset is included in the best position of
the current route, i.e., all pairs of vertexes of the solution are analyzed, and the itemset is included
between the pair that offers the best value. Eventually, some vertexes will have to be discarded
with the inclusion of an itemset in order not to violate the time constraint.

3 Computational Results

To our best knowledge, there are not public sites with instances of this problem. Thus, to evaluate
the algorithms here proposed a set of test problems of different dimensions was generated. Ten
instances were created for each dimension: 100, 120, 300, 500 and 1000 vertexes. Each instance
from 100 to 500 vertexes was executed 10 times and the instances of 1000 vertexes once for each
algorithm. In all instances there is an origin vertex at which every solution must begin and finish.
The level of oil of each well and the time to cover the distance between each pair of wells were
generated randomly.

The average results are shown in tables 1 and 2. We used the following parameters in the
algorithms: number of genes of a chromosome is the number of wells of OCVRP, the stopping
criterion is 500 iterations, size of population is 200, size of the elite set is 5 solutions, maximum
time to cover the route is 8 hours.

In tables 1 and 2, the first column presents the algorithms and the dimension of each instance, in
the other columns the value of each cell represents the average error concerning the best solution and
the best time obtained by each instance varying from 1 to 10, considering all proposed algorithms.

Table 1 shows that the version with data mining always obtains the best solution and that
this superiority increases with the dimension of the problem. This fact demonstrates the high
potential of this technique for solving real problems of high dimensions. Concerning the required
computational time, BGA, as already expected, presented the best times and GA2 the worst (see
Table 2).

Although the execution times required by GA2 are much worse than those obtained by the
other versions, we could observe in our empirical tests that in GA2, the best solution has always
been obtained before the iteration 300 while in the other versions, in many cases, the best solutions
were obtained in a number of iterations close to 500.

4 Conclusions

Based on tables 1 and 2, we can conclude that the proposal of incorporation of procedures of data
mining in an evolutive algorithm can improve its performance significantly concerning the quality of
generated solutions, mainly in instances with high dimensions. This improvement can be explained
by the fact that the procedure of data mining reduces the search space in highly combinatorial
problems. Consequently, best quality local optima are explored, increasing the chances of reaching
a global optimum in such problems.

Algorithm-dimension \instances 1 2 3 4 5 6 7 8 9 10

BGA100 31.9 30.68 31.02 29.5 26.53 48.81 47.02 19.04 48.85 45.24

GA1-100 0.00 0.00 0.00 0.19 1.25 7.15 10.57 9.18 13.98 12.2

GA2-100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BGA-120 31.94 33.58 31.1 21.13 21.66 52.49 56.58 50.64 47.28 49.08

GA1-120 0.00 0.16 0.89 3.2 2.05 13.14 21.76 16.64 16.64 13.71

GA2-120 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BGA-300 22.07 22.25 21.89 24.51 27.79 49.15 48.62 54.48 49.1 51.61

GA1-300 12.79 15.34 14.07 17.51 17.83 24.21 26.13 26.96 27.75 26.39

GA2-300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BGA-500 55.86 43.27 51.04 44.53 47.24 50.61 44.57 46.1 46.95 47.93

GA1-500 30.57 27.87 30.46 22.97 28.7 28.68 32.27 23.54 28.07 30.74

GA2-500 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BGA-1000 49.88 41.48 42.15 48.71 45.85 46.37 43.94 43.89 46.28 56.35

GA1-1000 33.57 24.48 29.24 29.96 32.38 30.67 29.89 27.07 28.94 33.77

GA2-1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Average performance of the proposed algorithms concerning the quality of solutions

In future work, we intend to develop more economical versions of the algorithm GA2 where the
selected itemsets by the data mining procedure are inserted only in a small percentage of the best
individuals of the population. We also intend to adjust the maximum number of iterations of GA2.
Thus, we expect to obtain a similar algorithm to GA2 concerning the quality of the generated
solutions with a drastical reduction of the execution times.

Other proposals include the development of genetic algorithms with procedures of data mining
to solve other optimization problems and the implementation of parallel versions of GA2 to reduce
the computational time.

References

[1] Agrawal, R., Imielinski, T., and Swami, A. (1993), Mining association rules between sets
of items in large databases. Proc. of the ACM SIGMOD Conf. on Management of Data,
Washington, DC, USA, 207-216.

[2] Aloise, D. J., Barros, J. A, and Souza, M. (2000), A genetic algorithm for a Oil Retrieval
System (In Portuguese). Proc. of the XXXII Brazilian Symposium on Operations Research,
São Paulo, Brazil.

[3] Balas, E. (1989), The Prize Collecting Traveling Salesman Problem. Networks 19,621-636.

[4] Beasley, J. (2002), Population Heuristics. In Handbook of Applied Optimization, Pardalos, P.
M. and Resende, M.G.C. (eds), Oxford University Press, Oxford, 138-157.

[5] Drummond, L. M. A., Vianna, D. S., and Ochi, L. S. (1998), An evolutionary hybrid meta-
heuristic for solving the vehicle routing problem with heterogeneous fleet. Lecture Notes in
Computer Science 1391, 187-195.

[6] Drummond, L. M. A., Vianna, L. S., Silva, M. B., and Ochi, L. S. (2002), Distributed Parallel
Metaheuristic based on GRASP and VNS for solving The Traveling Purchaser Problem. Proc.
of the 2002 Int. Conf. on Parallel and Distributed Systems, Taiwan, China, 257-263.

Algorithm-dimension \instances 1 2 3 4 5 6 7 8 9 10

BGA-100 10 9 9 9 10 5 6 5 5 5

GA1-100 35 35 35 33 30 18 8 17 18 26

GA2-100 69 73 64 171 152 82 53 61 75 87

BGA-120 15 15 14 15 14 9 9 9 9 9

GA1-120 52 49 47 41 41 26 26 26 27 27

GA2-120 96 128 279 189 175 106 110 93 131 120

BGA-300 342 341 341 342 343 342 342 342 346 374

GA1-300 468 466 467 463 460 447 447 450 449 448

GA2-300 8836 10082 9906 10173 10380 1743 2522 2369 2316 2462

BGA-500 3298 3371 3187 3107 3111 3123 3135 3130 3146 3119

GA1-500 3800 3825 3842 3840 3833 3816 3857 3905 3866 3888

GA2-500 16711 11961 16079 8891 16651 15434 15811 11914 16884 13768

BGA-1000 36358 35722 33020 33941 32912 33816 33415 33165 33818 35376

GA1-1000 48685 46720 46667 48717 49109 47327 47050 47136 47469 47063

GA2-1000 181215 141257 119212 104198 113472 112071 101349 76072 62944 82133

Table 2: Average performance of the proposed algorithms concerning the execution time in seconds

[7] Glover, F., Laguna, M., and Marti, R. (2000), Fundamentals of Scatter Search and Path
Relinking. Control and Cybernetics 39(3), 653-684.

[8] Golden, B.L., Levy, L. & Vohra, R. (1987). The Orienteering Problem. Naval Research Logistics
24, 307-318.

[9] Moscato, P. (1989), On Evolution, Search, Optimization Algorithms and Martial Arts: To-
wards Memetic Algorithms. Report 826, Caltech Concurrent Computation Program, California
Institute of Technology.

[10] Ochi, L. S., Vianna, D. S., and Drummond, L. M. A. (2001), An Asynchronous Parallel
Metaheuristic for the Period Vehicle Routing Problem. Future Generation Computer Systems
17, 379-386.

