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The Class/Teacher Timetabling Problem (CTTP) deals with the weekly scheduling of encounters
between teachers and classes of an educational institution. Since CTTP is a NP-hard problem for
nearly all of its variants, the use of heuristic methods for its resolution is justified. This paper
presents an efficient Tabu Search (TS) heuristic with two different memory based diversification
strategies for CTTP. Results obtained through an application of the method to a set of real world
problems show that it produces better solutions than a previously proposed TS found in the
literature and faster times are observed in the production of good quality solutions.
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1. INTRODUCTION

The Class/Teacher Timetabling Problem (CTTP) embraces the scheduling of se-
quential encounters between teachers and students so as to insure that requirements
and constraints are satisfied. Typically, the manual solution of this problem extends
for various days or weeks and normally produces unsatisfactory results due to the
fact that lesson periods could be scheduled which are inconsistent with pedagogical
needs or could even serve as impediments for certain teachers or students. CTTP,
in its optimization version, is a NP-hard problem [Even et al. 1976] for nearly all of
its variants, justifying the usage of heuristic methods for its resolution. Therefore,
various heuristic and metaheuristic approaches have been applied with success in
the solution of this problem, such as: Tabu Search (TS) [Souza et al. 2003; Costa
1994; Schaerf 1999], Genetic Algorithms [Wilke et al. 2002] and Simulated Anneal-
ing (SA) [Abramson 1991].

The application of TS to the CTTP is specially interesting, since this method is,
as local search methods generally are, very well suited for the interactive building
of timetables. Furthermore, T'S based algorithms offer robust solution methods for
timetabling problems [Dowsland 1997], often presenting the best known solutions,
when compared to other metaheuristics [Colorni et al. 1998; Souza 2000]. The
diversification strategy is an important aspect in the design of a TS algorithm.
Since the use of a tabu list is not enough to prevent the search process from be-
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coming trapped in certain regions of the search space, other mechanisms have been
proposed. In particular, for the CTTP, two main approaches have been used: adap-
tive relaxation [Schaerf 1999; Costa 1994] and random restart [Souza et al. 2003].
In adaptive relaxation the costs involved in the objective function are dynamically
changed to guide the search process to newly, unvisited, regions of the search space.
In random restart a new solution is generated and no previous information is used.

This work employs a TS algorithm that uses informed diversification strategies,
which take into account the history of the search process to guide the selection
of diversification movements. Successful implementations of these ideas can be
found in [Gendreau et al. 1994; Sun 2006]. Although it uses only standard TS
components, it provides better results than more complex previous proposals [Souza
et al. 2003].

The article is organized as follows: section 2 presents related works; section 3
introduces the problem to be treated; section 4 presents the proposed algorithm;
section 5 describes the computational experiments and their results; and finally,
section 6 formulates conclusions and future research proposals.

2. RELATED WORKS

Although the CTTP is a classical combinatorial optimization problem, no widely
accepted model is used in the literature. The reason is that the characteristics of
the problem are highly dependent on the educational system of the country and the
type of institution involved. As such, although the basic search problem is the same,
variations are introduced in different works (mainly in the evaluation of timetables)
[Colorni et al. 1998; Costa 1994; Schaerf 1999; Souza et al. 2003]. Described after-
wards, the problem considered in this paper derives from [Souza et al. 2003] and
considers the timetabling problem encountered in typical Brazilian high schools. In
[Souza et al. 2003], a GRASP-Tabu Search (GTS-II) metaheuristic was developed
to tackle this problem. The GTS-II method incorporates a specialized improvement
procedure named “Intraclasses-Interclasses”, which uses a shortest-path graph al-
gorithm. At first, the procedure is activated aiming to attain the feasibility of the
constructed solution, after which, it then aims to improve the feasible solution. The
movements made in the “Intraclasses-Interclasses” also remain with tabu status for
a given number of iterations. Diversification is implemented through the generation
of new solutions, in the GRASP constructive phase. In [Souza 2000] three differ-
ent metaheuristics that incorporate the “Intraclasses-Interclasses” were proposed:
Simulated Annealing, Microcanonical Optimization (MO) and Tabu Search. The
TS proposal significantly outperformed both SA and MO.

3. THE PROBLEM CONSIDERED

The problem considered deals with the scheduling of encounters with teachers and
classes over a weekly period. The schedule is made up of d days of the week with h
daily periods, defining the set P, with p = d x h distinct periods. There is a set T’
with ¢ teachers which teach to a set C' of ¢ classes, which are disjoint sets of students
with the same curriculum. The allocation of teachers to classes is previously fixed
and the workload is given in a matrix of requirements R;y., where 7;; indicates
the number of lessons that teacher ¢ shall teach for class j. Classes are available at
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Fig. 1. Fragment of generated timetable

any period, and must have their time schedules, of length p, completely filled out,
while each teacher ¢ indicates his/her set of available periods A;. Also, teachers
may request a number of double lessons per class. These lessons must be allocated
in two consecutive periods on the same day. This way a solution to the CTTP
problem must satisfy the following constraints:

(a) no class or teacher can be allocated for two lessons in the same period;
(b) teachers can only be allocated respecting their availabilities;

(c) each teacher must fulfill his/her weekly number of lessons;
)

(d) for pedagogical reasons no class can have more than two lesson periods with
the same teacher per day.

Also, there are the following desirable features that a timetable should present:

(a) the time schedule for each teacher should encompass the least possible number
of days;
(b) double lessons requests must be satisfied whenever possible;

(¢) “gaps” in the time schedule of teachers should be avoided, that is: periods of
no activity between two lesson periods.

3.1 Solution Representation

A timetable is represented as a matrix Qtxp, in such a way that each row rep-
resents the complete weekly timetable for a given teacher. As such, the value
qi € {0,1,---,c}, indicates the class for which the teacher i is teaching during pe-
riod k (g € {1,---,c}), or if the teacher is available for allocation (g;z = 0). The
advantage of this representation is that it eliminates the possibility for the occur-
rence of conflicts for teachers. The occurrence of conflicts in classes happens when
in a given period k£ more than one teacher is allocated to that class. Allocations are
only allowed in periods with teacher availability. A partial sample of a timetable
with 5 teachers can be found in Figure 1, with value “X” indicating unavailabilities
of teachers.

3.2 Objective Function

In order to treat CTTP as an optimization problem, it is necessary to define an
objective function that determines the degree of infeasibility and dissatisfaction
of requirements; that is, pretends to generate feasible solutions with a minimal
number of unsatisfied requisites. Thus, a timetable @ is evaluated with the following
objective function, which should be minimized:
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F(Q) =wx f[1(Q) + 6 x f2(Q) + p x f3(Q) (1)

where f; counts, for each period k, the number of times that more than one teacher
teaches the same class in period k£ and the number of times that a class has no
activity in k. The fs portion measures the number of allocations that disregard the
daily limits of lessons (constraint (d)). As such, a timetable can only be considered
feasible if f1(Q) = f2(Q) = 0. The importance of the costs involved defines a
hierarchy so that: w > § > p. The f3 component in the objective function measures
the dissatisfaction of personal requests from teachers, namely: double lessons, non-
existence of “gaps” and timetable compactness, as follows:

t

f3(Q)=Z(C¥iXgi"‘ﬁixvri‘%‘xh) (2)
i=1

where «;, 3;, and ; are weights that reflect, respectively, the relative importance of

the number of “gaps” g; , the number of week days v; each teacher is allocated for

teaching, and the non-negative difference [; between the minimum required number

of double lessons and the effective number of double lessons in the current agenda

for teacher .

4. TABU SEARCH FOR THE CLASS/TEACHER TIMETABLING PROBLEM

Tabu Search (TS) is an iterative method for solving optimization problems. It
explicitly makes use of memory structures to guide a hill-descending heuristic to
continue exploration without being confused by the absence of improvement move-
ments. This technique was independently proposed by Glover [Glover 1986] and
Hansen [Hansen 1986]. For a detailed description of TS, the reader is referred to
[Glover and Laguna 1997]. This section presents a brief explanation of TS prin-
ciples. They are followed by specifications of the customized TS implementation
proposed in this paper.

Starting from an initial solution x, the method systematically explores a subset
V(x) of the neighborhood N (x) and selects the best admissible movement m, so that
the application of m in the current solution z (denoted by x@m) produces the new
current solution z’ € V(x). Movements that deteriorate the cost function are also
permitted. Thus, to try to avoid cycling, a mechanism called short term memory
is employed. The objective of short term memory is to try to forbid movements
toward already visited solutions, which is usually achieved by the prohibition of
undoing the last performed movements. These movements are stored in a tabu list
and remain forbidden (with tabu status), for a given number of iterations, called
tabu tenure. Since this strategy can be too restrictive, so as not to disregard high
quality solutions, movements with tabu status can be accepted if the new solution
produced satisfies an aspiration criterion. Also, intensification and diversification
procedures can be used. These procedures, respectively, aim to deeply investigate
promising regions of the search space and to ensure that no region of the search
space remains neglected. Following is a description of the constructive algorithm
and the customized TS implementation proposed in this paper.
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procedure GenerateTimetable(a, R, A, P)
L: G —rij (€T, jeC);
2 Vi— A l€T); W;=P(GeC);

3: repeat

L 0 = |vim<‘}l§j[+19

5. RCL={(i,5) | 0:5 >0— (0 —0) x o}

6:  Randomly select (d,e), such that (d,e) € RCL;
7 F—VgnWe

8: if ' =( then

9: F — Vg;

10:  end if

11:  Associate probabilities to periods and randomly select f € F;
12: Qg < e

13: until 3¢;; >0 (i€ T,j € C);

14: return Q;

end GenerateTimetable.

Fig. 2. Pseudo-code for GenerateTimetable

4.1 Constructive Algorithm

The constructive algorithm basically consists of a greedy randomized construc-
tive procedure [Resende and Ribeiro 2003]. Although in other works the option
for a randomized construction is to provide diversification, through multiple re-
initializations, in our implementation the only purpose is to have control of the
randomization degree of initial solution. The construction procedure (Figure 2) is
somewhat similar to the human way of building timetables. To build a solution,
step-by-step, the principle of allocating first the most urgent lessons in the most
appropriate periods is used. Receiving problem data A, R and P (section 3), the
algorithm computes, at each iteration, the urgency degree 0;; of allocating a lesson
from teacher i for class j considering available periods V; from teacher i, available
periods W; from class j and the number of unscheduled lessons (;; of teacher i

for class j, as follows: 0;; = Ivrf% The algorithm then builds a restricted
candidate list (RCL) with ordered pairs (4,7) with highest urgency degrees, such
that RCL = {(i,j) | 0;5 > 0 — (0 — 8) x a}, where § = max{0;; | i € T, j € C} and
0 =min{6,; | i € T, j € C'}. At each iteration, one lesson from teacher i and class
j, such that (¢,j) € RCL, is randomly selected for allocation. The « parameter
(0 < a <1) allows tuning the randomization degree of the algorithm, varying from
the pure greedy lesson selection (o = 0) to a completely random (a = 1) selection
of teacher and class for allocation.

The selection of the period in which the selected lesson will be allocated is done
in free periods of teachers, trying to prevent clashes in classes timetables (this
constraint is violated whenever W; N'V; = (). To provide another level of diversity
in the initial solution, the selection of period for allocation is also probabilistic, in a
way that periods with low availability of teachers will have an exponentially bigger
probability of being chosen [Bresina 1996].

At each iteration, the number of unscheduled lessons, availabilities of teachers
and classes and urgency degrees are recomputed. The process continues until no
more unscheduled lessons are found (i.e.: ¢;; =0,i € T,j € C).
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procedure ImproveTimetable(Q, divActivation, iterationsDiv, Ctenure, P)
1: Q* = Q; TabuList = 0; nolmprovementlterations = 0; iteration = 0;
2: initialize LongTermMemory();
3: repeat
4 A = oo; iteration + +; bestMov = randomM ovement();
5:  for all movement m such that (Q ®m) € N(Q) do
6: penalty = 0;
7 if (noImprovementlterations mod divActivation < iterationsDiv)
and (iteration > divActivation) then

8: penalty = computePenalty(m);
9: end if
10 A= f(Qam) - f(Q)
11: if ( (A" + penalty < A) and (m ¢ TabuList) )
or ((f(Q@®m) < f(Q*)) and (A’ < A)) then
12: bestMov = m;
13: A=A
14: if (f(Q@®m) > f(Q*)) then A = A + penalty;
15: end if
16:  end for

17 update LongTermMemory(bestMov, Q);

18: Q= Q @ bestMov;

19:  tabuTenure(bestMov) = random(|ctenure — ¢ X Ctenurels [Ctenure + @ X Ctenure |);
20:  updateTabuList(bestMov, iteration);

21 if (f(Q) < f(Q")) then

22: Q* = Q; nolmprovementlterations = 0;
23: initialize LongT ermMemory();

24:  else

25: nolmprovementlterations++;

26:  end if

27: until termination criterion reached;
28: return Q*;

end ImproveTimetable.

Fig. 3. Pseudo-code for tabu search algorithm to the class/teacher timetabling problem

4.2 Tabu Search Components

The TS procedure (Figure 3) starts from the initial timetable () provided by the
constructive algorithm and, at each iteration, fully explores the neighborhood N (Q)
(in this implementation V(Q) = N(Q)) to select the next movement m. The
movement definition used here is the same as in [Schaerf 1999], and involves the
swapping of two values in the timetable of a teacher ¢ € T', which can be defined as
the triplet (i, p1, pe), such that gip, # Gip,, P1 < p2 and p1,p2 € {1,---, p}. Clearly,
any timetable can be reached through a sequence of these movements that is, at
most, the number of lessons in the requirements matrix. The time complexity of
exploring NV'(z) is O(t - p? - EV) where EV is the cost of evaluating each neighbor
solution, which can be efficiently done by recomputing only costs related to teacher
1 and conflicts in periods p; and ps.

Once a movement m is selected, it will be kept in the tabu list during the
next tabuTenure(m) iterations. In order to hinder the occurrence of cycling,
tabuTenure(m) is not a fixed value, but is randomly selected from values close
to a central value (Ctenure input parameter). The allowable deviation from this
value is defined by the ¢ input parameter (¢ € [0,1]), such that it will determine
the range of possible values for tabu tenure (line 19). Insertions and removals in
tabu list can be made at every iteration (line 20). The aspiration criterion defined
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is that the movement will lose its tabu status if its application produces the best
solution found so far (line 11).

Since short term memory is not enough to prevent the search process from be-
coming trapped in certain regions of the search space, some diversification strategy
is necessary. In the proposed method, long term memory is used to guide the di-
versification procedure. The motivation to employ a memory guided diversification
procedure instead of random re-start is twofold: firstly, information loss incurred
from random re-start is avoided and secondly, the use of memory to guide the di-
versification process, hopefully, diminishes the risk of revisiting the same region of
the search space.

Two types of long term memory are proposed. The first type involves the storage
of transition measures, counting the frequency of movements involving each teacher
and class. The second type involves the storage of residency measures counting the
number of times in which each lesson has occupied a given period. Every time a
movement is done, long term memory information is updated (line 17), and every
time the best solution is updated, long term memory is cleared (line 23).

While the diversification strategy is active, long term memory information is
used to guide the selection of movements, so that movements in slightly modified
timetables and/or movements which make unusual allocations are encouraged. This
is done through the incorporation of penalties in the evaluation of movements (line
8). In the following paragraphs a description of the proposed long term memo-
ries and how they are used to compute penalties in the diversification strategy is
presented.

4.2.1 Transition based long term memory. In this type of memory, transition
measures are stored in a matrix Z; ., counting how many movements z;; were done
involving teacher ¢ and class j. Using these values, transition ratios are computed.
Let Z = max{z; | i € T, j € C}, the transition ratio ¢;; for teacher ¢ and class j is:

_ Zij
Cij = = (3)
Since a movement can involve two lesson periods, or a lesson period and a free
period, the penalty used in the diversification strategy tiq,q, associated with a
movement in the timetable of teacher i, in periods p; and ps with allocations

a1 = Qip, and az = ¢jp,, respectively, considering the cost of the current solution

f(Q) is:

€ia; X [(Q) ifa; 20 and ax =0
Yiaras = % €iay X [(Q) ifa; =0 and as #0
(€iay T €iay)/2 % f(Q) if a1 # 0 and az # 0

Initialization of Z requires O(t - ¢) operations. Updates and lookups can be done

in O(1).

4.2.2 Residence based long term memory. In this type of memory, residence
measures are stored for each lesson, in a Yiyxexuxp matrix (v = max{rij | i €
T,j € C}), where y;jmi expresses how many iterations the m*" lesson of teacher i
on class j occupied period k. Although it is a fourth-dimensional matrix, this is a
very sparse matrix, in a way that efficient implementations make its use practical
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for problems considered in this paper. To compute the residence ratio 7;jmx of
the m!" lesson of teacher i and class j on period k, the maximum value of Yijmk
(ieT,jeCme{l,2,---,u},j € P) 7 is considered, as follows:

Yijmk
Nijmk = = 4)
Y
Thus, the penalty f;jms for allocating the m*" lesson of teacher i and class j on
period k is:

Pijmk = Nijmk X f(Q) (5)
By using hash tables, lookups for the residence ratio can be done in O(1) average
time. Update has O(t - p) time complexity.
For movements which involve two allocations in a timetable of a given teacher
the penalty will be the average penalty of the involved lessons.

The diversification strategy is applied whenever signals that regional entrench-
ment may be in action are detected. In this case, the number of non-improvement
iterations is evaluated before starting the diversification strategy (line 7). The
number of non-improvement iterations necessary to start the diversification process
(divActivation) and the number of iterations that the process will remain active
(iterationsDiv) are input parameters. The process is cyclic and restarts whenever a
multiple of divActivation non-improvement iterations is reached. Movements per-
formed in this phase can be viewed as influential movements [Glover and Laguna
1997], since these movements try to modify the solution structure in a influential
(non-random) manner. The function computePenalty (line 8) can use one of the
proposed long term memory based penalties. In the following sections the tabu
search implementation with transition based long term memory will be referred
as TST, while the implementation with residence based long term memory will be
referred as TSR. Another implementation, which maintains both types of long term
memory will be referred as TSTR. In TSTR, penalties computed using transition based
long term memory and residence based long term memory are summed and used
in the diversification strategy.

For comparison purposes, an implementation without any diversification strategy
(TS), also will be considered in next sections.

5. COMPUTATIONAL EXPERIMENTS AND DISCUSSION

Experiments were done in the set of instances originated from [Souza et al. 2003],
and the data referred to Brazilian high schools, with 25 lesson periods per week
for each class, in different shifts. In Table I some of the characteristics of the
instances can be verified, such as dimension and sparseness ratio (sr), which can

be computed considering the total number of lessons (#lessons) and the total
txp—(#lessons+#u)

number of unavailable periods (#u): sr = T<p Lower sparseness
values indicate more restrictive problems and, likewise, problems in which it is
more difficult to find feasible timetables.

Three objectives guided the selection of computational experiments to be in-
cluded in this work: firstly, to search for the best parameters and modules com-
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Table I. Characteristics of problem instances

Instance Teachers Classes Total Double Sparseness
Lessons Lessons Ratio(sr)

1 8 3 75 21 0.43
2 14 6 150 29 0.50
3 16 8 200 4 0.30
4 23 12 300 66 0.18
5 31 13 325 71 0.58
6 30 14 350 63 0.52
7 33 20 500 84 0.39

Table II. Average distance from best
known solution - TS

Central tabu tenure

Instance 15 20 25 30 Average

1 5.13 2.32 0.78 1.28 2.38
3.47 2.21 1.15 1.72 2.14
7.94 6.68 2.48 0.92 4.50
0.97 0.96 0.82 0.24 0.75
4.83 6.32 1.96 0.45 3.39
3.45 2.14 0.94 0.30 1.71

7 1.75 1.65 0.54 0.82 1.19
Average 3.93 3.18 1.24 0.82 2.29

S U W N

Table III. Average distance from best
known solution - TST

Central tabu tenure

Instance 15 20 25 30 Average

1 0.35 0.30 0.15 0.10 0.22
0.00 0.12 0.52 0.38 0.25
0.46 1.03 0.27 0.00 0.44
0.36 0.27 0.27 0.31  0.30
0.22 0.21 0.24 0.37 0.26
0.19 0.27 0.45 0.45 0.34

7 0.00 0.19 0.43 0.55 0.29
Average 0.22 0.34 0.33 0.31 0.30

S UL W N

position (which diversification strategy gives better results), secondly, verify how
the proposed tabu search heuristic compares to the previously proposed GTS-II
algorithm, and thirdly verify how good are the provided solutions, considering its
practical application.

The algorithms were coded in C4++ and the implementation of GTS-II was the
same presented in [Souza et al. 2003]. The compiler used was GCC 3.2.3 using
flag -02. Experiments were performed in micro-computers with AMD Athlon XP
1533 MHz processors, 512 megabytes of RAM, running the Linux operating system.

The weights in the objective function were defined as in [Souza et al. 2003]:
w=100,0=30,p=1,;=3,6;=9and v, =1, Vi=1,---t.

Initially, experiments to verify which is the best parameter configuration for
the proposed algorithms were done (parameters for GTS-II were the same used
in [Souza et al. 2003]). Average results of 10 independent executions (different
random seeds) on each instance for different central tabu tenure values (Cienure)
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Table IV. Average distance from best
known solution - TSR

Central tabu tenure

Instance 15 20 25 30 Average

1 0.59 0.15 0.00 0.20 0.23
0.61 0.32 0.20 0.41 0.39
0.14 0.60 0.76 1.17  0.66
0.24 0.21 0.34 0.37 0.29
0.30 0.00 0.35 0.31 0.24
0.00 0.39 0.39 0.41 0.30

7 0.45 0.63 0.38 0.72 0.55
Average 0.33 0.33 0.34 0.51 0.38

S U W N

Table V. Average distance from best
know solution - TSTR

Central tabu tenure

Instance 15 20 25 30 Average

1 0.25 0.10 0.15 0.25 0.19
0.26 0.44 0.61 0.61 0.48
0.73 0.30 0.53 0.53  0.52
0.00 0.15 0.19 0.43 0.19
0.05 0.09 0.56 0.55 0.31
0.08 0.19 0.53 0.59 0.35

7 0.04 0.20 0.36 0.44 0.26
Average 0.20 0.21 0.42 049 0.33

S UL W N

and instances were computed (other parameters remain fixed: o = 0.1, ¢ = 0.1,
div Activation = 500 and iterationsDiv = 10). Executions had fixed time limits, as
proposed in [Souza et al. 2003], which are for instances {1, - - -, 7}, respectively: {90,
280, 380, 870, 1930, 1650, 2650} seconds. In Tables II, ITII, IV and V, the average
distance of the cost of generated solutions from the best known solution is shown,
for strategies with and without the diversification component. As it can be seen, for
TS (without diversification strategy), better results were obtained with the highest
Ctenure Values. Nevertheless, implementations with the proposed diversification
strategies obtained better results, with any ctenure value, than the simple TS. While,
in average, TST performed better than TSR, the best results were obtained in the
implementation which considers both types of long term memory, using low Cienure
values, since TSTR with cienure = 15 generated solutions, in average, only 0.20%
distant from best known solution. From now on, results of the proposed algorithms
consider experiments with parameters which produced better average results (i.e.,
for ¢tenure : 30 for TS and 15 for TST, TSR and TSTR).

A different view of the results of the previously described experiment is presented
in Table VI. Average solution costs generated by proposed algorithms are compared
to average results of GTS-II within the same time limits. Best results are shown
in bold.

Results in Table VI demonstrate that although only minor differences can be
observed among implementations that use different penalty functions in the diver-
sification strategy, versions using informed diversification strategies perform signif-
icantly better than GTS-II and TS.

In order to evaluate the quality of the solutions obtained by the proposed method,
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Table VI. Average results, runs with fixed time limit
Instance GTS-II TS TST TSR TSTR
1 204.80  205.30 203.40 203.00 203.20
2 350.10 349.20 343.30 344.40 344.20
3 455.70  440.90 438.90 439.50  440.10
4 686.30  670.50 671.30 670.30 668.90
5 796.30  782.70 780.90 779.20 779.60
6
7

799.10  781.50  780.70  782.20 '779.80
1,076.20 1,063.80 1,055.20 1,061.90 1,055.60

Table VII. Average costs of objective function components
obtained by the constructive algorithm and at the end of the
tabu search heuristic

Constructive Algorithm

f3(Q%)

Instance f1(Q*) f2(Q*) >0 (%) >'_ gi(%g) cr
1 00 05 15.1(71.5)  17.2(22.9) 1.6
2 0.0 0.0 24 3(83.8) 24.8(16.5) 1.3
3 0.3 2.5 2.0(50.0)  31.2(15.6) 1.4
4 4.3 0.9 35. 5(53 8) 21.0(7.0) 1.2
5 00 02 54.1(76.1)  46.4(14.3) 1.5
6 0.2 0.0 53.7(85.2) 53.4(15.3) 14
7 05 02 69.6(82.9)  74.1(14.8) 1.3

At the end of the TSTR heuristic
1 0.0 0.0 1.9(9.0) 4.1(5.5) 1.2
2 0.0 0.0 7 3(25.2) 1.3(0.9) 1.0
3 0.0 0.0 0.4(10.0) 5.4(2.7) 1.1
4 0.0 0.0 19. 4(29.4) 3.8(1.3) 1.0
5 0.0 0.0 13.7(19.3) 3.5(1.1) 1.1
6 0.0 0.0 15.4(24.4) 8.8(2.5) 1.0
7 0.0 0.0 23.0(27.4) 10.6(2.1) 1.0

taking into account its practical application, and to verify how significant is the
improvement of TSTR over the solution received from the constructive algorithm,
Table VII presents the average costs involved in each objective function compo-
nent, for the solution provided by the constructive algorithm and for the improved
solution from TSTR. The three last columns are related to the f3 component of the
objective function (section 3.2) where %l is the percentage of unsatisfied double
lessons considering the number of double lessons requests and %g represents the
percentage of “gaps” in the timetable of teachers considering the total number of
lessons. cr measures the compactness ratio of timetable of teachers. To compute
cr, the summation of the actual number of days ad that each teacher must attend
to some lessons in the school and the lower bound for this value ad are used. The ad

pt

value considers the minimum number of days md; = ”-‘ that each teacher

i must attend some lectures in the school, such that ad = Zle md;. This way,
cr = ad/ad. Values close to one indicate that the timetable is as compact as it
can be. As can be seen in Table VII, the solution provided by the constructive
algorithm usually contains some type of infeasibility. These problems were always
solved by the TSTR algorithm, in a way that no infeasible timetable was produced.
Regarding the preferences of teachers, the timetable compactness, which has the
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Fig. 4. Empirical probability distribution of finding target value in function of time for instances
3 and 4

highest weight in the f3 component of the objective function, it can be seen that in
most cases the optimal value was reached (cr = 1). Also, small percentage values
were obtained for “gaps” and unsatisfied double lessons.
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Table VIII. Time (in seconds) for 25%, 50% and 75%
of runs achieve the target solution values.

GTS-1II TSTR
Instance | 25% 50%  75% | 25% 50% @ 75%
1 7.64 9.57 12.15| 2.13 3.36 6.39

21.39 26.57 34.68| 9.03 13.48 19.71
28.57 46.84 85.41|16.29 27.66 46.47
49.22 92.57 146.50| 2.65 3.40 5.45
47.79 62.85 102.20|27.63 37.85 54.51
35.81 48.00 72.12|25.20 33.97 44.38
92.41 150.72 287.48 |89.57 118.82 155.72

N o U W N

In another set of experiments, the objective was to verify the empirical probability
distribution of reaching a given sub-optimal target value (i.e., find a solution with
cost at least as good as the target value) in function of time in different instances.
The sub-optimal values were chosen in a way that the slowest algorithm could
terminate in a reasonable amount of time. In these experiments, TSTR and GTS-II
were evaluated and the execution times of 150 independent runs for each instance
were computed. The experiment design follows the proposal of [Aiex et al. 2002].
The results of each algorithm were plotted associating with the i*" smallest running
time ¢; a probability p; = (i — %)/150, which generates points z; = (¢;,p;), for ¢ =
1,---,150. The results shown that TSTR achieves high probability values (> 50%)
of reaching the target values in significantly smaller times than GTS-II, for all
instances. Representative results are presented in Figures 4 and 5.

This difference is enhanced mainly in instance 4, which presents a very low sparse-
ness ratio. This result may be related to the fact that the “Intraclasses-Interclasses”
procedure of GTS-II works with movements that use free periods, which are hard
to find in this instance. Another analysis, taking into account all test instances,
shows that at the time when 95% of TSTR runs have achieved the target value, in
average, only 64% of GTS-II runs have achieved the target value. Considering the
time when 50% of TSTR runs have achieved the target value, only 11%, in average,
of GTS-II runs have achieved the target value. Table VIII presents the execution
times needed by GTS-II and TSTR to achieve different probabilities of reaching the
target values.

6. CONCLUDING REMARKS

This paper presented a new tabu search heuristic to solve the class/teacher timetabling
problem. Experiments on real world instances showed that the proposed method
outperforms significantly a previously developed hybrid tabu search algorithm, and
it has the advantage of a simpler design.

Contributions of this paper include the empirical verification that although in-
formed diversification strategies are not commonly employed in tabu search im-
plementations for the class/teacher timetabling problem, their incorporation can
significantly improve the robustness of the method. The proposed method not only
produced better solutions for all test instances but also performed faster than a
hybrid tabu search approach.

Although in the proposed algorithm long term memory was used to guide diversi-
fication procedures, intensification strategies which use this type of information can
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Fig. 5. Empirical probability distribution of finding target value in function of time for instances
5and 7
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be formulated, and their application is worthy of receiving further investigation.

Other interesting enhancement to the algorithm could be the combination of
the “Intraclasses-Interclasses” procedure with an informed diversification strategy,
which could lead to even better results.
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