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Niterói - RJ, Brazil

b Campus Universitário de Palmas, Universidade Federal do Tocantins, Palmas -
TO, Brazil
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Abstract

One important problem in computational biology is the determination of the three-
dimensional structure of proteins. Some information about protein structure can be
obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide
only a sparse set of distances between atoms in a protein. The Molecular Distance
Geometry Problem (MDGP) consists in determining the three-dimensional struc-
ture of a molecule using a set of known distances between some atoms. Generally,
MDGP is expressed as a continuous optimization problem. Recently, a Branch and
Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on
a discrete formulation for the MDGP. We present an extension of the BP algorithm
that can calculate not only the protein backbone, but the whole three-dimensional
structure of proteins. Since this new algorithm preserves the combinatorial ap-
proach of the BP algorithm, it can potentially find all the solutions of the problem
(generally, the methods based on the continuous approach obtain just one solution).
The proposed algorithm was able to efficiently find all the solutions of the problems
associated to some of the most used proteins in the MDGP literature.
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1 Introduction

The function of a protein is determined by its chemical and three-dimensional
structures [2]. Some information about protein structure can be obtained
by using Nuclear Magnetic Resonance (NMR) techniques, which are able to
give a measure of the distance between pairs of atoms that are not greater
than 6Å [11]. The problem of finding the atomic positions of a molecule,
when only a given subset of atomic distances is known is called the Molecular
Distance Geometry Problem (MDGP) [5]. In practice, the MDGP is solved
by continuous optimization methods and they are usually capable to obtain
just a single solution for the problem (for a survey on methods for the MDGP,
see [6]).

In 2006, Lavor et al. [7] proposed a discrete formulation for the MDGP,
called Discretizable Molecular Distance Geometry Problem (DMDGP), and
presented a Branch and Prune (BP) algorithm that can calculate the backbone
of a protein.

We present an extension of the BP algorithm that can calculate not only
the protein backbone, but the whole three-dimensional structure of proteins.
Since this new algorithm preserves the combinatorial approach of the BP
algorithm, it can potentially find all the solutions of the problem. In the
computational results, the proposed algorithm was able to efficiently find all
the solutions of the problems associated to some of the most used proteins in
the MDGP literature.

2 Calculating the whole protein structure

Formally, the MDGP can be defined as the problem of finding Cartesian co-
ordinates x1, ..., xn ∈ R3 of atoms of a molecule such that

‖ xi − xj ‖= di,j, (i, j) ∈ S,
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where S is the set of pairs of atoms (i, j) whose Euclidean distances di,j are
known. If all distances are known, the problem can be solved in linear time
[3]. In general, however, the problem is NP-hard [10].

In [7,8], it was showed that under the following assumptions (that are
satisfied by most proteins), the MDGP can be formulated as a combinatorial
problem, called DMDGP:

• all the distances di−3,i, di−2,i, di−1,i must be known,

• the angles defined by each triplet of consecutive atoms cannot be equal to
kπ (for k ∈ Z),

for a given ordering of the atoms of a protein.

The BP algorithm proposed in [7,8] was applied to calculate just the back-
bone of artificial instances of the DMDGP. In fact, a real instance (protein
molecule) is composed of a backbone and many side chains, which are always
connected to one of the atoms of the backbone and appear systematically on
each three atoms of the backbone [2].

It was empirically verified that the side chains can be considered as in-
stances of the DMDGP, if they are treated isolated and by using an specific
ordering of its atoms (in general, the atoms of the side chains are not linearly
connected to each other) [9]. Thus, to determine the whole structure of a
protein, several instances of the DMDGP should be solved. The difficulty lies
in how to solve these instances in an efficiently and integrated manner.

The algorithm that we developed integrates the calculation of the positions
of the atoms belonging to the protein backbone and also the positions of the
atoms belonging to the side chains. To consider the atoms of the side chains as
instances of the DMDGP, it was necessary to define an ordering of its atoms
in order to satisfy the assumptions defined above. To do this, we formulate a
linear programming problem that could be efficiently solved for any side chain.

The algorithm starts by fixing the position of the first three atoms of
the protein backbone (H,N,Cα, C,N,Cα, C, ..., N, Cα, C). At the third atom
(Cα), there is a side chain. So, a DMDGP is solved considering the chain
formed by the first three atoms of the backbone and the atoms of the side
chain, considering an ordering of its atoms previously determined. The known
distances between the backbone atoms and the side chain atoms are used to
eliminate some positions which are unfeasible. Then, DMDGP’s are solved
to find positions for the fourth, fifth and sixth atoms of the backbone and
some of them are eliminated according to the known distances. At the sixth
backbone atom, another DMDGP is solved to find positions for the side chain
connected to the sixth backbone atom, considering the chain formed by the



fourth, fifth and sixth atoms of the backbone and the side chain atoms. This
procedure follows in the same way until the positions for all the atoms of the
protein backbone and all the side chains atoms are determined.

It was proved in [7] that for any solution found for solving the positions of
the backbone atoms, there is another one that can be easily obtained without
the application of the BP algorithm. We proved that this property also occurs
when we apply our algorithm for finding the positions of all protein atoms.
So, we used this property in the implementation of our algorithm in order to
reduce computational costs by half.

3 Computational results

The real instances generated for the MDGP are extracted from the structures
contained in the Protein Data Bank (PDB) [1]. The instances are generated
by calculating the distances among all the atoms of a protein and discarding
the distances that are above a cutoff value, which should be set to a value
detectable by NMR techniques [4].

The code was written in C++ programming language by using the Stan-
dard Template Library and compiled by the Visual C++ 2005. All the exper-
iments were carried out on an Intel Core 2, 1.6 GHz and 2GB RAM, running
Windows XP with Service Pack 2.

Different metrics to measure the quality of solutions and different cutoff
values are used in the generation of instances for the MDGP. All these factors
hinder a fair comparison between the methods. Thus, for testing the proposed
algorithm, we used some instances commonly found in the literature and the
Largest Distance Error (LDE) as a measure of solution accuracy, defined by

LDE =
1

|S|
∑

(i,j)∈S

|‖xi − xj‖ − dij|
dij

,

where S is the set of pairs of atoms (i, j) whose Euclidean distances dij are
known and xi, xj are the Cartesian coordinates of atoms (i, j), respectively.
The cutoff value for generating the instances was fixed in 6Å, which is the
maximum value allowed to simulate data obtained through NMR [11].

The table below presents the obtained results. The column #Atoms indi-
cates the number of atoms of the protein, the column #Sol shows the amount
of found solutions, the column PDB indicates which of the found solutions has
the greatest degree of similarity with the protein obtained from the PDB (us-
ing the RMSD value [8]), the column LDE shows the value in correspondence
with the best found solution, and the column CPU shows the computational



Protein #Atoms #Sol PDB LDE CPU

1brv 261 2 2 1.95e-17 0.5780

1ptq 402 8 2 3.91e-15 1.1400

1aqr 524 2 2 5.25e-17 1.9210

1hoe 558 4 2 6.93-e17 1.3590

1lfb 641 4 2 5.87e-17 1.5310

1ahl 684 2 1 3.97e-17 4.0000

1pht 811 8 2 6.41e-17 4.0930

1brz 859 2 1 5.29e-17 6.1710

1poa 914 32 9 7.50e-17 5.4210

1acz 1613 8 2 4.71e-17 17.078

1rgs 2015 4 1 1.58e-16 5.3590

time, in seconds, took by the method for finding all solutions.

The computational results show the very good performance of the algo-
rithm and the high quality of the solution associated to the greatest degree
of similarity with the protein obtained from the PDB. In fact, all the found
solutions presented LDE values very small. As it was said, one of the main
advantages of the combinatorial approach is the possibility to obtain all the
solutions of the problem.

4 Conclusions

We presented a method to calculate the three-dimensional structure of a pro-
tein, using a set of known distances between some atoms of the protein ob-
tained by NMR techniques. It was based on the BP algorithm, which can
calculate just the protein backbone and was tested only on artificial instances.
Now, it is possible to calculate the whole protein structure, including the side
chains.

Since this new algorithm preserves the combinatorial structure of the BP
algorithm, it was able to find all the solutions of the selected problems (gener-
ally, the methods based on the continuous approach obtain just on solution).
In addition to this, the computational times for executing the algorithm were
quite small and the quality of the generated solutions was very high.
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Universidade Federal Fluminense (IC-UFF), 2009.

[10] Saxe, J.B., Embeddability of weighted graphs in k-space is strongly NP-hard,
Proceedings of 17th Allerton Conference in Communications, Control and
Computing, Monticello, IL, 480–489, 1979.

[11] Schlick, T., Molecular Modeling and Simulation: An Interdisciplinary Guide,
Springer, New York, 2002.


