
MIC2003: The Fifth Metaheuristics International Conference ??-1

GRASP for the maximum diversity problem

Paulo Marcos F. de Andrade� Alexandre Plastino� Luiz Satoru Ochi�

Simone de L. Martins�

�Departamento de Ciência da Computa�c~ao, Universidade Federal Fluminense
Niter�oi, Rio de Janeiro, Brazil

pandrade@ic.uff.br,fplastino,satoru,simoneg@dcc.ic.uff.br

1 Introduction

The maximum diversity problem (MDP) [2, 3, 4] consists of identifying optimally diverse sub-
sets of individuals from populations. The selection of elements is made based on the diversity
of their characteristics, calculated by a function applied on their attributes. The goal is to
�nd the subset that presents the maximum possible diversity. There are many applications [6]
that can be solved using the resolution of this problem, such as medical treatment, selecting
jury panel, scheduling �nal exams and VLSI project.

This problem belongs to the class of NP-hard problems [3]. Glover et al. [3] present mixed
integer zero-one formulation for this problem, that can be solved for small instances by exact
methods. But this solution is not feasible for large problems due to large computational time.

Some heuristics and metaheuristics are available to obtain approximate solutions for this
problem. Constructive and destructive heuristics were presented by Glover et al. [4]. Kochen-
berger et al. [6] showed results obtained using a tabu search and Katayama et al.[5] developed
a memetic algorithm. Ghosh [2] proposed a GRASP that obtained good results for small
instances of the problem.

In this paper, we present a new GRASP for this problem. In Section 2, we describe the
construction and local search phases developed, and in Section 3, we present computational
results for small and large instances of the problem. Concluding remarks are made in Section
4.

2 GRASP heuristic

Ghosh [2] proposed a GRASP heuristic for this problem and tested it for small instances. We
developed a new GRASP and processed both of them for small and new large instances.

The GRASP [1] is an iterative process, where each iteration consists of two phases: con-
struction and local search phase. The construction phase builds a feasible solution, whose

Kyoto, Japan, August 25{28, 2003

??-2 MIC2003: The Fifth Metaheuristics International Conference

neighborhood is explored by local search. The best solution from all iterations is returned as
result.The phases of both GRASPs are described below.

2.1 Construction phase

Let S = fsi : i 2 Ng; N = f1; 2; : : : ; ng be a population of n elements and sik, k 2 R =
f1; 2; :::; rg the r values of the attributes of each element. The distance between any two

elements i and j is the euclidean distance calculated as dij =
qPr

k=1(sik � sjk)2. Let M be

a subset of N and the overall diversity be z(M) =
P

i<j:i;j2M dij . The MDP problem consists
of maximizing z(M), subject to jM j = m.

The construction phase consists of m iterations. In the algorithm developed by Ghosh, for
each iteration k, Mk�1 is a partial solution with k�1(1 � k � m) elements. The element i� to
be inserted in each iteration is selected based on its contribution to the overall diversity z(M).
First, a lower bound �zL(i) and an upper bound �zU (i) are computed for all i 2 N �Mk�1.
Then a random number u is sampled from a uniform distribution U(0; 1) that is used to
compute �z0(i) = (1� u)�zL(i) + u�zU (i). The selected element i� is the one that presents
the larger �z0 and is included inMk�1 to obtainMk. The computations of �zL(i) and �zU (i)
are:

�zL(i) =
P

j2Mk�1
dij +

P
n�m+1�r�n�k d

r
i (Qik);

�zU (i) =
P

j2Mk�1
dij +

P
1�r�m�k d

r
i (Qik);

where dri (Qik) is the rth largest distance in fdij : j 2 Qikg; Qik = N �Mk�1 � fig.

The lower bound �zL(i) is computed by adding the distances among i and the elements
that are already in the solution to the sum of distances among i and the m� k � 1 elements
that are not in solutionMk�1 and which have smaller distances to i. The upper bound �zU (i)
is computed by adding the same �rst term of �zL(i) to the sum of distances among i and the
m� k � 1 elements that are not in solution Mk�1 and which have larger distances to i.

We developed a new algorithm for the construction phase trying to improve the results
generated by Ghosh's algorithm.

Initially, the vectors SD(i) =
P

ji2N dij and MD(i) =
P

j2N dij=n are computed for each
element i. The �rst one is the sum of distances between i and the other elements and the
second one is the average of these distances.

The initial element i = i 2 M1 is selected randomly from the m individuals that have
larger values of SD, in order to start the construction of the solution with an element that
presents a large sum of distances. Then for each iteration, a restricted candidate list is created
and an element from this list is randomly selected. The algorithm to build the restricted list
is in Figure 1.

In line 2, we compute for each element i 2 N �Mk�1 the sum of distances SDS(i) from it
to the elements that are already in the solution. From lines 3 to 7, �z(i) is computed by two
di�erent ways for each element i. For the �rst m=2 elements to be inserted in the solution, we
favour the elements that present an average of distances related to all population larger than

Kyoto, Japan, August 25{28, 2003

MIC2003: The Fifth Metaheuristics International Conference ??-3

procedure Build list (N;Mk�1)
01. for all i 2 N �Mk�1 do

02. SDS(i)

P
j2Mk�1

dij

k�1 ;
03. if ((SDS(i) > SD(i)) and (k > m=2)) then do

04. �z(i) SDS(i);
05. else

06. �z(i) SDS(i)+MD(i)
2 ;

07. end if;
08. end for;
09. Sort i 2 N �Mk�1 by �z;
10. if m > n=2 then do

11. lim list n�m;
12. else

13. lim list m;
14. end if;
15. D 0;
16. for (i = 0; : : : ; lim list� 1) do
17. D D + (�z(i)��z(i+ 1));
18. end for;
19. D D=lim list;
20. Q 0;
21. Restricted List f;g;
22. for (i = 1; : : : ; lim list) do
23. if ((�z(i)��z(i+ 1)) < D) then do

24. Restricted List [fig; Q Q+ 1;
25. else

26. break;
27. end for;
28. return Restricted List;

Figure 1: Algorithm for building the restricted candidate list

the distances related to the individuals of the partial solution Mk�1. For the selection of the
next m=2 elements, the privileged individuals are the ones that present larger distances to the
elements already in the partial constructed solution. In line 9, the elements that are not in
the partial solution are sorted in decrescent order by their �z values and in lines 10 to 14 we
select an initial size for the initial restricted list. From lines 15 to 19, we compute the average
of di�erences D among �z of the elements from this list. From lines 20 to 27, we create the
�nal restricted list by selecting elements from the initial list that present a di�erence among
their �z less than D, in order to assure that elements that present �z close to another may
be in the solution and to avoid the selection of elements that have �z too distant from each
other.

2.2 Local Search Phase

After a solution is constructed, a local search phase should be executed for attempting to
improve the initial solution. The neighborhood of a solution de�ned by Ghosh [2] is the set
of all solutions obtained by replacing an element in the solution by another that does not
belong to the set of its elements. The incumbent solution M is initialized with the solution

Kyoto, Japan, August 25{28, 2003

??-4 MIC2003: The Fifth Metaheuristics International Conference

obtained by the construction phase. For each i 2M and j 2 N �M , the improvement due to
exchanging i by j, �z(i; j) =

P
u2Mfig

(dju � diu) is computed. If for all i and j, �z(i; j) < 0,

the local search is terminated, because no exchange will improve z. Otherwise, the elements of
the pair (i; j) that provides the maximum �z(i; j) are interchanged, a new incumbent solution
M is created and the local search is performed again.

We use this same local search strategy for developing the GRASP presented here. The
pseudo-code with the complete description of procedure GRASP newconstr for the maximum
diversity problem is given in Figure 2.

procedure GRASP newconstr

01. best value 0;
02. Compute SD(i) and MD(i) for all i 2 N ;
03. Sort the elements in N by SD(i);
04. for it = 1; : : : ;max iterations do
05. Choose randomly an individual from the �rst m elements of N to create M1;
06. for k = 2; : : : ;m do

07. Restricted List Build List(N;Mk�1);
08. Select randomly i� from Restricted List
09. Mk =Mk�1 [fi�g;
10. end for

11. best weight =
P

i;j2Mm
dij ;

12. do local search 1;
13. while do local search do

14. for all i 2Mm do

15. Compute �z(i; j); j 2M � fig;
16. end for

17. if max(�z(i; j)) > 0 then do

18. Mm = Mm � fi�g [fj�gj�z(i�; j�) = max�z(i; j);
19. best weight = best weight+max(�z(i; j));
20. else do local search 0;
21. end if

22. end while

23. if best weight > best value then do

24. best value best weight;
24. end if;
25. end for;

Figure 2: Algorithm GRASP for MDP

3 Computational Results

We tested the proposed GRASP using two sets of problems. For the �rst one, we used small
populations n = 10, n = 20, n = 30, n = 40 and n = 50 and implemented an exact algorithm
that provided optimal solutions. This exact algorithm performed an exhaustive search in the
solutions space. For the second one, we used populations of sizes n = 100, n = 150, n = 200,
n = 250 and we were not able to run the exact algorithm due to CPU time limits.

Besides the size of population we had to specify the distances in the set fdij ; i < j; i; j 2 Ng.
We created four di�erent sets for these distances: A, B, C and D. For the �rst one, we sampled

Kyoto, Japan, August 25{28, 2003

MIC2003: The Fifth Metaheuristics International Conference ??-5

from a discrete uniform distribution over [1..9] the attributes for each individual and calculated
dij as the euclidean distance of these attibutes. In the second one, we chosed randomly the
distances dij from a uniform distribution over [1..9999]. For the third and fourth we sampled
50% of the elements from a uniform distribution over [1..9999] but the other 50% were sampled
from a uniform distribution over [1..4999] for the �rst case, and over [5000..9999] for the second
case.

The tests were processed using 10, 100 and 1000 iterations for each instance and each one
was executed three times. We also implemented Ghosh algorithm to compare the results.

In Table 1, we show the results of computing 1000 iterations for the �rst set of tests
(population 10, 20, 30, 40 and 50), for which we have optimal solutions. In the �rst line we
identify the size of population. In the second line, we show the type of problem, that is the
way the distances were computed. In the third line, we show the size of the subset to be
selected (20% of the population). In the fourth and �fth columns, we present the optimality
gap (100[zexact � zGrasp]=zexact) for the average values(AS) obtained in three executions and
the best solution (BS) found by Gosh algorithm. The sixth and seventh lines show the same
results for our new algorithm. In the following lines we show the results obtained by Ghosh
and our new algorithm for a subset of size equal to 40% of population.

We can see that the proposed GRASP found optimal solutions for all instances, while
Ghosh algorithm could not �nd the optimal solution for instance B with population equal to
40 and subsite size equal to 16. Considering average solutions, we can see that the proposed
algorithm missed to �nd the optimal solution only for one instance, while the Ghosh algorithm
missed in two cases. The execution times for both algorithms were less than 1 second, while
the exact algorithm took 12 hours of processing time.

For the second set of larger instances with population 100, 150, 200 and 250 we do not have
the optimal solutions, so we considered the \optimal solution" for computing the optimality
gap the best solution found by one of the algorithms executing 1000 iterations. The results
are showed in Table 2.

Table 1: Results for both GRASPs compared with optimal solutions for 1000 iterations

Population 10 20 30 40 50

Problem A B C D A B C D A B C D A B C D A B C D

jmj - 4 6 8 10

Ghosh AS - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BS - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

New Grasp AS - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08

BS - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

jmj 4 8 12 16 20

Ghosh AS 0 0 0 0 0 0 0 0 0 0 0.13 0 0 0.15 0 0 0 0 0 0

BS 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0 0 0

New Grasp AS 0

BS 0

The proposed GRASP has found better results in eleven instances out of those �fteen
where the two algorithms dont �nd the same solutions. We note also that the average solution
corresponds to the better solution in 19 instances for the proposed GRASP and in 14 instances

Kyoto, Japan, August 25{28, 2003

??-6 MIC2003: The Fifth Metaheuristics International Conference

Table 2: Results for both GRASPs compared with the best solution found for 1000 iterations

Population 100 150 200 250

Problem A B C D A B C D A B C D A B C D

jmj 20 30 40 50

Ghosh AS 0.01 0.09 0.08 0 0.02 0.26 0 0 0 0.30 0.06 0.03 0 0.13 0.13 0.07

BS 0 0 0 0 0.01 0.13 0 0 0 0.30 0.06 0.03 0 0.04 0 0

New Grasp AS 0 0 0 0 0 0 0 0.05 0 0.06 0 0.04 0 0.06 0.02 0.05

BS 0 0 0 0 0 0 0 0.04 0 0 0 0 0 0 0 0.04

jmj 40 60 80 100

Ghosh AS 0 0 0 0.02 0 0.08 0 0 0 0.17 0.02 0.01 0 0.17 0.01 0

BS 0 0 0 0.02 0 0.06 0 0 0 0.17 0.02 0 0 0.08 0 0

New Grasp AS 0 0 0 0.01 0 0.03 0 0.01 0 0.08 0 0.02 0 0.02 0 0.06

BS 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.05

for Ghosh algorithm.

The average computational time was quite similar for both algorithms ranging from 1s to
450s when the size of the subset is 20% of the population and from 1s to 3500s for a subset of
40% of the population.

4 Concluding Remarks

We described a GRASP algorithm for the maximum diversity problem, created new instances
of the problem and compared the results obtained with optimal solutions and the solutions
provided by the algorithm developed by Ghosh.

The tests showed that the GRASP heuristic is quite eÆcient for obtaing optimal solutions
and good solutions, using much less time than an exact algorithm.

Comparing both GRASP algorithms, we can see that the GRASP proposed here give
better solutions. The new construction phase gave better initial solutions and larger diversity
of solutions that enabled the improvement of the solution by the local search phase in many
cases.

We observed that 85% of the processing time for the proposed GRASP was due to the
local search phase and, most of the times, it does not improve the initial solution. So we
are investigating new local search strategies less intensive to improve the computational time
while maintaining the quality of solutions.

References

[1] T. A. Feo and M. G. C. Resende, \Greedy randomized adaptative search procedures",
Journal of Global Optimization 6, 1995, 109-133.

[2] J. B. Ghosh, \Computational aspects of the maximum diversity problem", Operations
Research Letters 19, 1996, 175-182.

Kyoto, Japan, August 25{28, 2003

MIC2003: The Fifth Metaheuristics International Conference ??-7

[3] F. Glover, G. Hersh and C. McMillan, \Selecting subsets of maximum diversity", MS/IS
Report No. 77-9, University of Colorado at Boulder, 1977.

[4] F. Glover, C-C. Kuo and K. S. Dhir, \Integer programming and heuristic approaches
to the minimum diversity problem", Journal of Business and Management, 4(1), 1996,
93-111.

[5] K. Katayama and H. Naribisa, \An evolutionary approach for the maximum diversity
problem", Working Paper, Dept. of Information and Computer Engineering, Okayama
University of Science, 2003.

[6] G. Kochenberger and F. Glover, \Diversity data mining", Working Paper, Hearin Center
for Enterprise Science, College of Business Administration,1999.

Kyoto, Japan, August 25{28, 2003

