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Abstract

The Vehicle Routing Problem with Time Windows is a particular case of the classical Vehicle Routing Problem in which
the demands of each customer should be met within an established time window. Due to the combinatorial complexity of
the problem its resolution by pure exact methods is, in many cases, computationally impractical. This fact motivates the
development of heuristic algorithms, which are usually faster but do not guarantee the best solution for the problem. This
work proposes a hybrid algorithm that combines the metaheuristic Iterated Local Search, the Variable Neighborhood
Descent procedure and an exact Set Partitioning model. The latter mathematical procedure is periodically activated
in order to find the best combination of the routes generated along the execution of the algorithm. The computational
results demonstrate that the proposed hybrid approach is quite competitive, since out of the 56 test problems considered,
the algorithm was found capable to improve the best known heuristic/hybrid solution in 12 cases and to equal the result
of another 27.
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1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is a well known optimization problem and it has
received a lot of attention in operational research literature. In this problem, a fleet of vehicles must leave the
depot, serve customer demands, and return to the depot, at minimum cost, without violating the capacity of
the vehicles as well as the time window specified by each customer.

There are two main reasons (operational and theoretical) for investing in research to develop new algorithms
for the efficient resolution of this problem. From the practical/operational point of view, the costs related to
transporting people or merchandise are generally high, with a tendency to increase, motivated by the actual
expansion of commerce of all types [3]. Researchers calculate that 10% to 15% of the final cost of the merchandise
commercialized in the world is due to its transport [10]. From the theoretical aspect, since the VRP and most
of its variants, including the VRPTW, are NP-hard problems [13], the efficient resolution of these problems
represents a challenge for researchers, who, in general, opt for heuristic approaches. The size of this challenge
is demonstrated by the great number of articles dealing with this type of problem.
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The VRPTW has been dealt with various objectives and, in the present work, the aim is to minimize the total
traveling distance which is one of the most commonly found in literature. Rochat [20], Backer [4], Riise [19],
Kilby [9], Ombuki [17], Alvarenga [3] and Oliveira [7] also adopted the same objective.

Given the complexity of the problem, its resolution using pure exact methods is often an extremely arduous task
due the large amount of computational time required. This fact has motivated the development of new heuristic
algorithms for solving VRPTW. It is noteworthy to mention that such algorithms aims at finding near-optimal
solutions using less computational effort.

The algorithm proposed in this article for solving VRPTW combines the concepts of Iterated Local Search
metaheuristic, the Variable Neighborhood Descent method and an exact Set Partitioning model, which periodi-
cally determines the best combination of routes generated during the execution of the algorithm. The developed
algorithm was tested on a set of 56 instances containing 100 customers that was proposed by Solomon [23].
These test-problems had been widely adopted in the literature and it is used to measure the efficiency of exact,
heuristic and hybrid methods.

The remainder of this work is organized as follows. Section 2 defines the VRPTW. Section 3 describes the
proposed algorithm. Section 4 contains the computational results. Section 5 presents the concluding remarks.

2 Problem definition

The VRPTW can be defined in a complete directed graph G = (V,A) in which V = {0, . . . , n + 1} is the set
of vertices and A = {(i, j)|i, j ∈ V } is the set of arcs. Each arc (i, j) is associated to a time tij and a traveling
cost cij , both non-negative.

At this moment, it is necessary to precisely define the term traveling cost. In practice, the traveling cost can take
into consideration many factors, such as: distance, time, vehicle wear and consumption during the trip, among
others. However, when dealing with the theoretical problems involving time windows, it is common to convert
all the relevant measures into time units for standardization and method comparison purposes. Therefore, in
this work the definition of traveling cost is: distance converted into time units.

In general, a set K of identical vehicles with capacity Q should attend n customers, represented by vertices
1, . . . , n. Consider that N = V −{0, n+1} represents a set of customers. To attend these customers, the vehicles
should leave the depot, visit them, and then, return to the depot. For the sake of convenience, the depot is
represented by two vertices: the vertex 0 representing the source and the vertex n + 1 representing the sink.
Each customer i, has a demand qi that must be attended by a single vehicle. In addition, all the vertices have a
time window [ei, li]; that is, the service of the vertex i must be started within this interval. If the vehicle arrives
at the customer i before the instant ei, it should await the opening of the window. The vehicle cannot arrive
at i after the instant li, since this would violate the time constraint of the problem. This type of constraint is
known in the literature as hard time windows. For each vertex, there is a service time di. The objective is to
minimize the route’s total cost c(s); in other words, to minimize the sum of all the costs of the trip

∑
(i,j)∈s cij

that are associated with the arcs (i, j) present in the solution s.

The VRPTW mathematical formulation, also used by Cordeau et al [6], is represented by the expressions (1)-(9)
which follow. In these expressions, the binary variable xijk assumes a value of 1, if the vehicle k traverses arc
(i, j); and 0, otherwise.

Minimize
∑
k∈K

∑
i∈V

∑
j∈V

cijxijk (1)
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subject to: ∑
k∈K

∑
j∈V

xijk = 1 ∀i ∈ N (2)∑
j∈V

x0jk = 1 ∀k ∈ K (3)∑
i∈V

xijk −
∑
i∈V

xjik = 0 ∀k ∈ K,∀j ∈ N (4)∑
i∈V

xi(n+1)k = 1 ∀k ∈ K (5)∑
i∈N

qi
∑
j∈V

xijk ≤ Q ∀k ∈ K (6)

bik + di + tij − (1− xijk)Mij ≤ bjk ∀k ∈ K,∀(i, j) ∈ A (7)

ei ≤ bik ≤ li ∀k ∈ K,∀i ∈ V (8)

xijk ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A (9)

The objective function (1) represents the total cost to be minimized. Constraints (2) assure that only one vehicle
k leaves the customer i. Constraints (3)-(5) guarantee the path continuity of the vehicle k; that is, each vehicle
leaves the depot, visits the customers, and then, returns to the depot. Constraints (6) make sure that each
vehicle k only attends the set of customers whose total demands do not surpass its capacity Q. Constraints
(7)-(8) assure route feasibility as regards the time window, where bik represents the time from which the vehicle
k begins to serve the customer i and Mij are large constants. According to Cordeau et al. [6], Mij can be
replaced by max{bi + di + tij − ej , 0} ∀(i, j) ∈ A. Constraints (9) define the domain of the decision variables.

3 Proposed methodology

This section details the proposed hybrid algorithm. Section 3.1 presents the data structure used to represent
a VRPTW solution, while Section 3.2 describes the penalty-based function that evaluates a solution for the
problem. Next, Section 3.3 demonstrates the procedure used to construct the initial solution; and Section 3.4
describes the utilized neighborhood structures. Finally, Section 3.5 presents the proposed algorithm.

3.1 Solution representation

A route r is defined by a sequence of integer numbers that corresponds to the identifiers of the customers in r.
A solution s contains a set of routes.

3.2 Evaluation function

A solution s is evaluated by the function f , given by the equation (10), which must be minimized:

f(s) =
∑
r∈s

g(r) =
∑
r∈s

(c(r) + wl.l(r) + we.e(r)) (10)

where: g is a function that evaluates routes; c(r) is the cost of the route r; l(r) corresponds to the lateness
time for r; e(r) is the load excess in the route r; wl and we are penalties per unit of delay and excess load,
respectively, and those values were empirically fixed in wl = 200 and we = 300. Notice that when s is feasible,
the value given by f will only correspond to the travel cost, since in this case: l(r) = e(r) = 0.

3.3 Constructive procedure

To obtain an initial solution for the VRPTW, a cheapest insertion method, called CI-POP(), that explores
the Proximate Optimality Principle [18] was developed. According to this principle, in an optimal sequence of
choices, each sub-sequence should also be optimal. It is worth mentioning that although this principle deals
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with optimal cases, in the developed algorithm there is no guarantee that the optimal solution will be obtained,
or even parts of the optimal solution. Thus, this principle is only employed to generate better initial solutions.
The pseudo-code of the constructive method is presented in Algorithm 1.

Algorithm 1: CI-POP()

Let s0 be a solution with |K| empty routes1
foreach customer c ∈ {1, . . . , n} do2

best cost←∞3

foreach route r ∈ s0 do4
foreach position p of route r which it is possible to insert customer c do5

cost← cost of the insertion of customer c at position p of route r6

if cost < best cost then7
best r ← r ; best p← p ; best cost← cost8

end9

end10

end11
Add customer c at position best p in the route best r of solution s012

if (c mod dn/5e) = 0 then13
Refine the partial solution s0 by the heuristic h14

end15

end16

return s017

Let |K| be the maximum number of available vehicles. Initially, the constructive algorithm creates |K| empty
routes (line 1 of Algorithm 1) and a list of candidates to be inserted in the set of routes (line 2). The idea
of the procedure is to iteratively insert each candidate customer in the best location (line 12). A local search
is periodically performed in the partial solution (line 14). More specifically, the parameters of line 13 were
calibrated in such a way that five local searches occur during the construction; for example, if there is a total
of 100 customers, the local search is performed for every twenty customers added to the partial solution. In
this case, the local search is performed using the RVND (see Section 3.5.2). The procedure terminates when all
customers have been added.

3.4 Neighborhood structures

In order to explore the solution space, 10 neighborhood structures are used, where six of these modify two
routes at each movement performed (inter-route), while the other four modify only a single route (intra-route).
The inter-route neighborhood structures are generated by the following movements: Shift(1, 0), Shift(2, 0),
Shift(3, 0), Swap(1, 1), Swap(2, 1) and Swap(2, 2). A movement of the neighborhood structure Shift(k, 0) involves
transferring k adjacent customers from route r1 to another route r2; and a movement of the type, Swap(k, l),
interchanges k adjacent customers from route r1 to l other adjacent customers from another route r2.

As for those neighborhood structures that only modify one route at a time, the following movements are used:
Exchange, Shift’ (1), Shift’ (2) and Shift’ (3). The Exchange neighborhood involves the permutation between two
customers of the same route and it can be seen as an intra-route version of the Swap(1, 1) neighborhood. The
other three neighborhoods can be considered as intra-route versions of the Shift(1, 0), Shift(2, 0) e Shift(3, 0)
neighborhoods, respectively.

3.5 Proposed algorithm

The proposed algorithm, called Intensified Iterated Local Search (IILS-SP), involves the construction of an
initial solution according to the procedure presented in Section 3.3, followed by a local search that combines
adapted versions of the Iterated Local Search (ILS) and Variable Neighborhood Descent (VND) methods with
an exact approach based on the mathematical formulation of the Set Partitioning (SP). The pseudo-code of
IILS-SP is presented in Algorithm 2. Let s0 be an initial solution; s∗ the best solution obtained during the
procedure execution; s′ a perturbed solution; and, s′′ a local optimal solution obtained by the application of
the RVND to the perturbed solution. The following sections detail each part of this algorithm.

3.5.1 Intensified Iterated Local Search

Intensified Iterated Local Search is an extension of the Iterated Local Search – ILS [14] metaheuristic. ILS explores
the solution space by applying perturbations to the current local optimal solution. This metaheuristic starts
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Algorithm 2: IILS-SP()

s0 ← CI-POP()1
s∗ ← RVND(s0)2

repeat3

s′ ← Perturbation(s∗, history)4

s′′ ← RVND(s′)5
if AppropriatedMoment(history) then6

s′′ ← Intensification (s′′)7

end8

s∗ ← AcceptanceCriterion(s′′, s∗, history)9

until stop criterion not satisfied10
return s∗11

with the initial solution s0 and applies a local search to it, obtaining s∗. Next, the method iteratively performs
the following steps: (i) perturbs the current best solution s∗; (ii) obtains a solution s′; and (iii) performs a local
search in s′, obtaining a local optimal s′′. If s′′ is better than the current best solution s∗, then the method
transforms s′′ into the new current solution. Otherwise, the method performs another iteration. This procedure
is repeated until the stopping criterion is met.

It is important to emphasize that ILS’s success strongly depends on the perturbations performed. This way, the
perturbation applied to a given solution should be proportioned in such a way that the resulting modification
is sufficient to escape from local optima and to explore different regions of the search space, but keeping some
characteristics of the current best solution, in order to avoid a complete random restart in next iterations.

In this work, a perturbation (line 4 of Algorithm 2) consists of applying p + 2 movements randomly chosen in
the neighborhood Shift, presented in Section 3.4, where p ∈ {0, 1, 2, . . . } represents the perturbation level. This
way, the greater this value, the greater the number of modifications performed in the solution. Herein, ILSmax
iterations without improvement are applied in the same perturbation level. When this value is achieved, the
perturbation level is increased.

In this case, the local search of the IILS (lines 2 and 5 of Algorithm 2) is performed using the Variable
Neighborhood Descent with random neighborhood ordering, denoted by RVND (see Section 3.5.2).

Finally, the proposed algorithm contains an intensification module (line 7 of Algorithm 2). This module is
activated at appropriate moments of the search and invokes a mathematical programming procedure, based on
Set Partitioning, to find the optimal set of routes among those generated during the search. More specifically,
the partitioning model is applied to the set formed by all the routes belonging to the solutions generated after
the local search phase of the IILS algorithm. That is, for each IILS iteration, the routes of the solution s′′ (line
5 of Algorithm 2) are added to the set to be partitioned. This is done in such a way that there are no repeated
routes in the set, which has an unlimited size. A description of this module is given in Section 3.5.3.

3.5.2 Variable Neighborhood Descent with random neighborhood exploration

The procedure Variable Neighborhood Descent (VND) [16] involves an exhaustive exploration of the solution
space by means of systematic exchanges of the neighborhood structures. During the local search, only the
solution that is better than the current best solution is accepted. When a better solution is found, the method
restarts the search, beginning with the first neighborhood structure.

The method VND is based on three principles: (i) a local optimum for a given neighborhood structure does not
necessarily correspond to a local optimum of another neighborhood structure; (ii) a global optimum corresponds
to a local optimum for all neighborhood structures; and (iii) for many problems, the local optimum of a given
neighborhood structure is close to the local optima of other neighborhood structures.

The latter principle, of empirical nature, indicates that a local optimum frequently gives some type of information
about the global optimal. This is the case in which local and global optimum share a lot of variables with the
same value.

The classical version of VND searches local optimal solutions following a fixed order of neighborhood structures.
This strategy is widely applied and the results in literature confirm its efficiency. However, for the results
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presented in this work, a random order was used to explore the neighborhoods. This strategy is adopted with
success in [24]. Here, this strategy is so-called RVND.

3.5.3 Set partitioning model

The intensification phase of the proposed algorithm involves the exact resolution of a Set Partitioning Problem
(SPP). Let R be the subset of routes generated by the IILS-algorithm and let yj , ∀j ∈ R, be the binary variables
that indicate if the route j ∈ R is part of the solution (yj = 1); or not (yj = 0). Each route j ∈ R has an
associated cost gj . The parameter mij is equal to 1 if the customer i ∈ N is attended by the route j ∈ R; and
0, otherwise. The mathametical formulation is as follows.

Minimize
∑
j∈R

gjyj (11)

subject to:∑
j∈R

mijyj = 1 ∀i ∈ N (12)∑
j∈R

yj ≤ |K| (13)

yj ∈ {0, 1} ∀j ∈ R (14)

The objective of this formulation is to find a set of routes that attend the constraints of the problem with a
minimum cost (11). Constraints (12) guarantee that each customer is visited by exactly one route. Constraints
(13) ensure that a solution contains up to |K| routes. Constraints (14) define the domain of the variables.

Many combination optimal problems can be described as a SPP. For VRP problems in particular, this model has
been adopted with success by various authors, among them: Agarwal [1], Desrosiers [8], Kohl [11] and Larsen
[12]. The last two specifically address VRPTW, obtaining new optimal results for the Solomon [23] instances.

In this work, the SPP model was implemented using API Concert for C++ and solved by the CPLEX optimizer,
version 12.

4 Computational results

The proposed algorithm (IILS-SP) was developed in C++ programming language and tested in a computer
with an Intel Quad Core 2.4 GHz microprocessor with 8 GB of RAM memory and operating system Ubuntu
Linux 9.10 64 bits (kernel 2.6.31).

IILS-SP was applied to solve the set of instances proposed by Solomon [23], which is well known and widely
used in literature. This set has 56 instances with 100 customers, divided in six classes: C1, C2, R1, R2, RC1 and
RC2. The instances contained in the C1 and C2 classes have customers that are geographically clustered, while
in R1 and R2, the customers are randomly located. The RC1 and RC2 classes mix the clustering and randomly
located customers. In addition, the C2, R2 and RC2 classes are designed for a longer term planning and have
a greater vehicle capacity than the C1, R1 and RC1 classes. This means that each vehicle in C2, R2 and RC2
has a capacity to attend a greater number of customers.

For each of the 56 instances, five runs were performed using a 10-minute processing time limit for each run as
stopping criterion 1 . The algorithm was empirically calibrated and the parameters were fixed as follows: (i) in
the construction of an initial solution, as customers are being inserted, five local searches were performed as
described in Section 3.3; (ii) the number of no-improvement iterations at a given level of perturbation of IILS
was fixed as 20; (iii) the procedure is iteratively performed according to the Multi-Start [15] method, where
at each iteration, an initial solution is constructed by a non-deterministic method described in the Section 3.3

1 The computational results of this research are available at http://www.decom.ufop.br/sabir/shared/2011iesm-vrptw-
results.zip
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and a local search is performed by IILS-SP; and (iv) the maximum processing time for each execution of the
mathematical solver in the intensification phase was limited to 5 seconds.

Tables 1-6 present to best-available results in literature for each of the analyzed instances, as well as the results
obtained by the proposed algorithm. The first column indicates the name of the problems. The next three
correspond to the number of vehicles (“|K|”), the total distance traveled in the best solution obtained for the
problem (“Distance”) and the first work that obtained it, respectively. The next group of columns present the
results of the proposed method, which include: (i) the number of vehicles; (ii) the distance of the best solution
obtained in 5 executions of the algorithm (“Best”); (iii) the average traveled distance obtained (“Average”);
(iv) the deviation from the average with respect to the best solution (“gap”), which is in accordance with the
following definition: gap = (Average − Best)/Best, where Best is the best distance value found; and (v) the
last column (“Impr.”) presents the improvements obtained by IILS-SP with respect to the best solutions found
in literature, in accordance with Improvement = (BestLit−Best)/Best. The best solutions are highlighted in
boldface and the solutions improved by the IILS-SP algorithm are underlined.

Table 1
Results for C1 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

C101 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C102 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C103 10 828.06 RT95 [20] 10 828.06 828.06 0.00% 0.00%

C104 10 824.78 RT95 [20] 10 824.78 824.78 0.00% 0.00%

C105 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C106 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C107 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C108 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

C109 10 828.94 RT95 [20] 10 828.94 828.94 0.00% 0.00%

Table 2
Results for C2 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

C201 3 591.56 RT95 [20] 3 591.56 591.56 0.00% 0.00%

C202 3 591.56 RT95 [20] 3 591.56 591.56 0.00% 0.00%

C203 3 591.17 RT95 [20] 3 591.17 591.17 0.00% 0.00%

C204 3 590.60 RT95 [20] 3 590.60 596.42 0.99% 0.00%

C205 3 588.88 RT95 [20] 3 588.88 588.88 0.00% 0.00%

C206 3 588.49 RT95 [20] 3 588.49 588.49 0.00% 0.00%

C207 3 588.29 RT95 [20] 3 588.29 588.29 0.00% 0.00%

C208 3 588.32 RT95 [20] 3 588.32 588.32 0.00% 0.00%

In summary, the best solutions found during the executions by the IILS-SP were: 100% (9/9) tied values for
C1; 100% (8/8) tied values for C2; 33.3% (4/12) improved and 41.6% (5/12) tied values for R1; 27.3% (3/11)
improved and 9.1% (1/11) tied values for R2; 37.5% (3/8) improved and 37.5% (3/8) tied values RC1; and 25%
(2/8) improved and 12.5% (1/8) tied values for RC2. Overall, the values improved in 21.4% (12/56) of the cases,
the values tied in 48.2% (27/56) and the values decreased in 30.4% (17/56).

The algorithm proved to be robust, since it presented relatively small gaps. In 80.4% (45/56) of the analyzed
instances, gap was less that 1.0%. When this value was improved, the gap was always smaller than 4.16% (as in
the R208). These results show that the algorithm produces final solutions with quite little variability in terms
of solution quality. In addition, in some cases (R110, R202 e RC105) the proposed algorithm produced better
results in average than those found in literature.

Table 7 presents the results of different researches that had as primary objective the minimization of the total
distance traveled. The columns represent the algorithm whereas the lines show the average number of vehicles
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Table 3
Results for R1 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

R101 20 1642.88 AM04 [2] 20 1642.88 1642.88 0.00% 0.00%

R102 18 1472.62 AM04 [2] 18 1472.81 1472.81 0.01% -0.01%

R103 14 1213.62 RT95 [20] 14 1213.62 1214.40 0.06% 0.00%

R104 11 986.10 AL07 [3] 11 982.30 988.65 0.26% 0.39%

R105 15 1360.78 AL07 [3] 15 1360.78 1360.78 0.00% 0.00%

R106 13 1241.52 AL07 [3] 13 1239.37 1242.48 0.08% 0.17%

R107 11 1076.13 AL07 [3] 11 1075.21 1076.23 0.01% 0.09%

R108 10 948.57 AL07 [3] 10 951.22 955.39 0.72% -0.28%

R109 13 1151.84 AL07 [3] 13 1151.84 1152.06 0.02% 0.00%

R110 11 1080.36 RT95 [20] 12 1072.41 1072.41 0.00% 0.74%

R111 12 1053.50 AL07 [3] 12 1053.50 1054.43 0.09% 0.00%

R112 10 953.63 RT95 [20] 10 956.36 961.66 0.84% -0.29%

Table 4
Results for R2 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

R201 8 1147.80 OV08 [7] 8 1147.80 1149.94 0.19% 0.00%

R202 8 1039.32 OV08 [7] 8 1034.35 1039.19 0.47% 0.48%

R203 6 874.87 OV08 [7] 6 881.12 892.38 2.00% -0.71%

R204 5 735.80 OV08 [7] 4 745.12 759.48 3.22% -1.25%

R205 5 954.16 OV08 [7] 5 955.96 967.51 1.40% -0.19%

R206 5 884.25 OV08 [7] 5 879.89 891.15 0.78% 0.50%

R207 4 797.99 OV08 [7] 4 808.23 820.73 2.85% -1.27%

R208 4 705.62 OV08 [7] 3 724.98 734.94 4.16% -2.67%

R209 5 860.11 OV08 [7] 5 859.39 866.29 0.72% 0.08%

R210 5 910.98 OV08 [7] 7 914.84 919.89 0.98% -0.42%

R211 4 755.82 OV08 [7] 4 762.38 772.97 2.27% -0.86%

Table 5
Results for RC1 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

RC101 15 1623.58 RT95 [20] 15 1623.58 1626.82 0.20% 0.00%

RC102 14 1466.84 AL07 [3] 14 1461.23 1472.15 0.36% 0.38%

RC103 11 1261.67 S98 [22] 11 1262.02 1273.51 0.94% -0.03%

RC104 10 1135.48 C01 [6] 10 1135.52 1135.79 0.03% 0.00%

RC105 16 1518.60 AM04 [2] 16 1518.58 1518.58 0.00% 0.00%

RC106 13 1377.35 AM04 [2] 13 1376.99 1378.25 0.07% 0.03%

RC107 12 1212.83 AM04 [2] 12 1212.83 1212.83 0.00% 0.00%

RC108 11 1117.53 AM04 [2] 11 1117.53 1120.99 0.31% 0.00%

and the total distance traveled of the best solutions obtained for each class. For each algorithm, the average
results with respect to Solomon’s benchmarks are reported with respect to number of vehicles (“NV”) and total
distance (“TD”). CNV and CTD indicate, respectively, the cumulative number of vehicles and cumulative total
distance over all the 56 instances. When observing the results of each group separately, the conclusion is that
the algorithm values tied with those of the best results found in literature in the cluster groups of C1 and C2,
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Table 6
Results for RC2 problem class

Problem Literature best known IILS-SP Impr.

|K| Distance Work |K| Distance Average gap

RC201 9 1266.11 OV08 [7] 9 1265.90 1268.59 0.20% 0.02%

RC202 8 1096.75 OV08 [7] 8 1095.64 1099.17 0.22% 0.10%

RC203 5 926.89 OV08 [7] 5 937.45 949.94 2.49% -1.13%

RC204 4 786.38 OV08 [7] 4 796.55 810.88 3.12% -1.28%

RC205 7 1157.55 OV08 [7] 7 1157.66 1161.82 0.37% -0.01%

RC206 6 1056.21 OV08 [7] 6 1069.00 1076.84 1.95% -1.20%

RC207 6 966.08 OV08 [7] 6 966.08 982.07 1.66% 0.00%

RC208 4 779.84 OV08 [7] 5 785.07 788.78 1.15% -0.67%

Table 7
Comparisons between different works that optimize the total distance traveled

Class Work This work

RT95[20] CA99[5] SC00[21] AL07[3] OV08[7]

C1 NV 10.00 10.00 10.00 10.00 10.00 10.00

TD 828.38 828.38 828.38 828.38 828.38 828.38

C2 NV 3.00 3.00 3.00 3.00 3.00 3.00

TD 589.86 596.63 589.86 589.86 589.86 589.86

R1 NV 12.16 12.42 12.08 13.25 13.33 13.17

TD 1208.50 1233.34 1211.53 1183.38 1186.94 1181.03

R2 NV 2.91 3.09 2.82 5.55 5.36 5.36

TD 961.71 990.99 949.27 899.90 878.79 883.10

RC1 NV 11.87 12.00 11.88 12.88 13.25 12.75

TD 1377.39 1403.74 1361.76 1341.67 1362.44 1338.54

RC2 NV 3.37 3.38 3.38 6.50 6.13 6.13

TD 1119.59 1220.99 1097.63 1015.90 1004.59 1009.17

All classes CNV 414 420 412 489 488 482

CTD 57231 58927 56830 55134 55021 54842

and outperformed them in the groups of R1 and RC1. In the R2 and RC2 groups, although the results were
close, they were not able to improve the values of the other groups. Therefore, when considering the overall
scenario, IILS-SP outperformed all the others algorithms in terms of solution quality.

5 Conclusions

This paper presented a hybrid algorithm for the Vehicle Routing Problem with Time Windows. The proposed
algorithm (IILS-SP) combines the metaheuristic Iterated Local Search, the Variable Neighborhood Descent
procedure and an exact Set Partitioning model that, periodically, finds the best combination of the routes
generated along the algorithm. Given the combinational nature of the problem, its resolution using pure exact
approaches is, in many cases, computationally impractical. This fact motivates the development of heuristic
algorithms to address this problem. The proposed algorithm combines the flexibility of heuristic methods and
the power of mathematical programming.

The IILS-SP was tested in 56 well-known VRPTW instances and the results were compared with the best
solutions found in literature. The computational results show that the proposed hybrid approach is quite com-
petitive, since out of the 56 test problems considered, the algorithm improved the best known heuristic/hybrid
solution in 12 cases and equaled the result of another 27.
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