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Abstract This paper deals with the Heterogeneous Fleet Vehicle Routing Problem
(HFVRP). The HFVRP is N P -hard since it is a generalization of the classical Vehi-
cle Routing Problem (VRP), in which clients are served by a heterogeneous fleet of
vehicles with distinct capacities and costs. The objective is to design a set of routes
in such a way that the sum of the costs is minimized. The proposed algorithm is
based on the Iterated Local Search (ILS) metaheuristic which uses a Variable Neigh-
borhood Descent procedure, with a random neighborhood ordering (RVND), in the
local search phase. To the best of our knowledge, this is the first ILS approach for
the HFVRP. The developed heuristic was tested on well-known benchmark instances
involving 20, 50, 75 and 100 customers. These test-problems also include dependent
and/or fixed costs according to the vehicle type. The results obtained are quite com-
petitive when compared to other algorithms found in the literature.
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1 Introduction

The Vehicle Routing Problem (VRP) is one of the best known problems in the field
of Operations Research. Inspired by real world applications, several variants were
proposed over the years. Our interest relies on the Heterogeneous Fleet Vehicle Rout-
ing Problem (HFVRP). This variant is a generalization of the classical VRP allowing
vehicles with different capacities, instead of a homogeneous fleet. This situation can
be often found in practice and the HFVRP models this kind of applications.

According to Hoff et al. (2010), in industry, a fleet of vehicles is rarely homoge-
neous. Generally, either an acquired fleet is already heterogeneous or they become
heterogeneous over the time when vehicles with different features are incorporated
into the original fleet. In addition, insurance, maintenance and operating costs usually
have distinct values according to the level of depreciation or usage time of the fleet.
Moreover, from both a tactical and an operational point of view, a mixed vehicle fleet
also increases the flexibility in terms of distribution planning.

The HFVRP practical importance can be verified by the variety of case studies
found in the literature. Prins (2002) described an application in the French furniture
industry involving 775 destination stores in which the heterogeneous fleet is com-
posed by 71 vehicles. Cheung and Hang (2003) examined a case faced by transporta-
tion of air-cargo freight forwarders where the vehicle fleet is heterogeneous. Addi-
tional constraints such as backhauls and time windows were also taken into account
by the authors. Tarantilis and Kiranoudis (2001) considered a real world case regard-
ing the distribution of fresh milk in Greece that is performed using a heterogeneous
fixed fleet. Tarantilis and Kiranoudis (2007) presented two planning problems where
the first one dealt with the distribution of perishable foods for a major dairy company
while the second one dealt with the distribution of ready concrete for a construction
company. In these two cases, the fleet was admitted to be fixed and heterogeneous.
A comprehensive survey on industrial aspects of combined fleet composition and
routing in maritime and road-based transportation was recently performed by Hoff et
al. (2010).

There are a couple of HFVRP variants often found in the literature. They are ba-
sically related to the fleet limitation (limited or unlimited) and the costs considered
(dependent and/or fixed). The HFVRP with unlimited fleet, also known as the Fleet
Size and Mix (FSM), was proposed by Golden et al. (1984) and it consists of deter-
mining the best fleet composition and its optimal routing scheme. Another HFVRP
version, called Heterogeneous VRP (HVRP), was proposed by Taillard (1999) and it
consists in optimizing the use of the available fixed fleet.

The HFVRP is N P -hard since it includes the classical VRP as a special case,
when all vehicles are identical. Therefore, (meta)heuristic algorithms are a suitable
approach for obtaining high quality solutions in an acceptable computation time.

In this paper, we present a hybrid heuristic based on the Iterated Local Search
(ILS) metaheuristic which uses a Variable Neighborhood Descent procedure, with
a random neighborhood ordering (RVND), in the local search phase. According to
Lourenço et al. (2003), ILS contains several of the desirable features of a metaheuris-
tic such as simplicity, robustness, effectiveness and the ease of implementation. The
authors also described a number of well-succeeded ILS implementations for differ-
ent Combinatorial Optimization problems such as the Traveling Salesman Problem
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(TSP), Job Shop, Flow Shop, MAX-SAT, etc. Surprisingly, to date there are relatively
few applications of this metaheuristic to VRPs (see, for example, Bianchi et al. 2006;
Ibaraki et al. 2008; Prins 2009a; Subramanian et al. 2010; Chen et al. 2010). Nev-
ertheless, the computational results found by these researchers who have made use
of an ILS approach to solve some VRP variant are quite encouraging. To the best
of our knowledge, this is the first ILS approach developed for the HFVRP. The pro-
posed heuristic is an extension of the one presented by Subramanian et al. (2010) for
the VRP with Simultaneous Pickup and Delivery. Five HFVRP variants were tackled
and the results obtained were compared with other solution approaches found in the
literature.

The remainder of this paper is organized as follows. Section 2 describes the
HFVRP and its main variants. Section 3 reviews some works related to the HFVRP.
Section 4 provides a brief outline of the ILS metaheuristic. Section 5 explains the
proposed hybrid heuristic. Section 6 contains the results obtained and a comparison
with those reported in the literature. Section 7 presents the concluding remarks of this
work.

2 Problem description

The HFVRP is defined in the literature as follows. Let G = (V ,A) be a directed
graph where V = {0,1, . . . , n} is a set composed by n + 1 vertices and A = {(i, j) :
i, j ∈ V, i �= j} is the set of arcs. The vertex 0 denotes the depot, where the vehicle
fleet is located, while the set V ′ = V \ {0} is composed by the remaining vertices that
represent the n customers. Each customer i ∈ V ′ has a non-negative demand qi . The
fleet is composed by m different types of vehicles, with M = {1, . . . ,m}. For each
u ∈ M , there are mu available vehicles, each with a capacity Qu. Every vehicle is
associated with a fixed cost denoted by fu. Finally, for each arc (i, j) ∈ A there is an
associated cost cu

ij = dij ru, where dij is the distance between the vertices (i, j) and
ru is a dependent (variable) cost per distance unit, of a vehicle u.

A route is defined by the pair (R,u), with R = (i1, i2, . . . , i|R|) and i1 = i|R| = 0
and {i2, . . . , i|R|−1} ⊆ V ′, that is, each route is a circuit in G, including the depot,
associated with a vehicle u ∈ M . A route (R,u) is feasible, if the customers demands
do not exceed the capacity of the vehicle. The cost associated to a route is the sum
of the fixed cost of the corresponding vehicle and the cost of the traversed arcs. This
way, the HFVRP consists in finding feasible routes in such a way that each customer
is visited exactly once; the maximum number of routes defined for a vehicle u ∈ M

do not exceed mu; and the sum of the costs is minimized.
The present work deals with the five following variants:

i. HVRPFD, limited fleet, with fixed and dependent costs;
ii. HVRPD, limited fleet, with dependent costs but without fixed costs, i.e., fu =

0,∀k ∈ M ;
iii. FSMFD, unlimited fleet, i.e., mu = +∞,∀k ∈ M , with fixed and dependent costs;
iv. FSMF, unlimited fleet, with fixed costs but without dependent costs, i.e., c

u1
ij =

c
u2
ij = cij ,∀u1, u2 ∈ M,u1 �= u2, ∀(i, j) ∈ A;

v. FSMD, unlimited fleet, with dependent costs but without fixed costs.
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3 Literature review

The first HFVRP variant studied in the literature was the FSM, initially proposed
by Golden et al. (1984). The authors developed two heuristics where the first one is
based on the savings algorithm of Clarke and Wright (1964), while the second one
makes use of a giant tour scheme. They also proposed a mathematical formulation
for the FSMF and presented some lower bounds.

Some exact approaches were developed for the FSM. Yaman (2006) suggested
valid inequalities and presented lower bounds for the FSMF. Choi and Tcha (2007)
obtained lower bounds for all FSM variants by means of a column generation algo-
rithm based on a set covering formulation. Pessoa et al. (2009) proposed a Branch-
Cut-and-Price (BCP) algorithm also capable of solving all FSM variants. The same
authors also employed a BCP algorithm over an extended formulation to solve the
FSM and other VRPs such as the Open VRP and the Asymmetric VRP (Pessoa et al.
2008). More recently, Baldacci and Mingozzi (2009) put forward a set-partitioning
based algorithm that uses bounding procedures based on linear relaxation and La-
grangian relaxation to solve the five HFVRP variants mentioned in Sect. 2. Their
solution method is capable of solving instances with up to 100 customers and, to our
knowledge, this is the best exact approach proposed in the HFVRP literature.

Some authors implemented heuristic procedures based on Evolutionary Algo-
rithms. Ochi et al. (1998a) developed a hybrid evolutionary heuristic that combines a
Genetic Algorithm (GA) (Holland 1975) with Scatter Search (Glover et al. 2003) to
solve the FSMF. A parallel version, based on the island model, of the same algorithm
was presented by Ochi et al. (1998b). A hybrid GA that applies a local search as a
mutation method was proposed by Liu et al. (2009) to solve the FSMF and the FSMD.
A Memetic Algorithm (MA) (Moscato and Cotta 2003) was proposed by Lima (2004)
for solving FSMF. Two heuristic procedure based on the same metaheuristic were de-
veloped by Prins (2009b) to solve all FSM variants and the HVRPD.

Renaud and Boctor (2002) proposed a sweep-based heuristic for the FSMF that in-
tegrates classical construction and improvement VRP approaches. Imran et al. (2009)
developed a Variable Neighborhood Search (VNS) (Mladenovic and Hansen 1997)
algorithm that makes use of a procedure based on Dijkstra’s and sweep algorithms for
generating an initial solution and several neighborhood structures in the local search
phase. The authors considered all FSM variants.

A couple of Tabu Search (TS) (Glover 1986) heuristics were proposed to solve the
FSMF and the FSMD. Gendreau et al. (1999) suggested a TS algorithm that incorpo-
rates a GENIUS approach and an AMP. Lee et al. (2008) developed an algorithm that
combines TS with a SP approach. More recently, Brandão (2009) proposed a deter-
ministic TS that makes use of different procedures for generating initial solutions.

The HVRP was proposed by Taillard (1999). The author developed an algorithm
based on AMP, TS and column generation which was also applied to solve the FSM.

Prins (2002) dealt with the HVRP by implementing a heuristic that extends a series
of VRP classical heuristics followed by a local search procedure based on the Steepest
Descent Local Search and TS.

Tarantilis et al. (2003) solved the HVRPD by means of a threshold accepting ap-
proach that consists of an adaptation of the SA procedure in which a worse solution
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is only accepted if it is within a given threshold. The same authors (Tarantilis et al.
2004) also proposed another threshold accepting procedure to solve the same variant.
Li et al. (2007) put forward a record-to-record travel algorithm that, also as the thresh-
old method, consists of a deterministic variant of the SA. The authors considered both
HVRPFD and HVRPD.

A HFVRP comprehensive survey containing all the five variants mentioned here
can be found in Baldacci et al. (2008).

4 A brief overview of the ILS metaheuristic

The proposed general heuristic is mostly based on the ILS framework. Before de-
scribing the solution method, a brief outline of this metaheuristic is provided.

Consider a local optimum solution that has been found by a local search algo-
rithm. Instead of restarting the same procedure from a completely new solution, the
ILS metaheuristic applies a local search repeatedly to a set of solutions obtained by
perturbing previously visited local optimal solutions. The essential idea of ILS re-
sides in the fact that it focuses on a smaller subset, instead of considering the total
space of solutions. This subset is defined by the local optimum of a given optimization
procedure (Lourenço et al. 2003). To implement an ILS algorithm, four procedures
should be specified: (i) GenerateInitialSolution, where an initial solution
is constructed; (ii) LocalSearch, which improves the solution initially obtained;
(iii) Perturb, where a new starter point is generated through a perturbation of the
solution returned by the LocalSearch; (iv) AcceptanceCriterion, that de-
termines from which solution the search should continue. Algorithm 1 describes how
these components are combined to build the ILS framework.

Algorithm 1: ILS

Procedure ILS1

s0 ← GenerateInitialSolution2

s∗ ← LocalSearch(s0)3

while Stopping criterion is not met do4

s′ ← Perturb(s∗, history)5

s∗′ ← LocalSearch(s′)6

s∗ ← AcceptanceCriterion(s∗, s∗′, history)7

end8

end9

The modification realized in the perturbation phase is used to escape from a cur-
rent locally optimal solution. Frequently, the move is randomly chosen within a larger
neighborhood than the one utilized in the local search, or a move that the local search
cannot undo in just one step. In principle, any local search method can be used.
However, ILS performance, in terms of the solution quality and computational effort,
strongly depends on the chosen procedure. The acceptance criterion is used to decide
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the next solution that should be perturbed. The choice of this criterion is important
because it controls the balance between intensification and diversification. The search
history is employed for deciding if some previously found local optimum should be
chosen. The performance of the ILS procedure strongly depends on the intensity of
the perturbation mechanisms. If it is small, not many new solutions will be explored,
while if it is too large, it will adopt almost randomly starting points.

5 The ILS-RVND heuristic

This section describes the ILS-RVND heuristic and its steps are summarized in Algo-
rithm 2. For the HVRP, the given number of vehicles of each type is initially consid-
ered, while for the FSM, one vehicle of each type is first considered (line 2). Let v be
the number of vehicles (line 3). The multi-start heuristic executes MaxIter iterations
(lines 4–24), where at each iteration a solution is generated by means of a construc-
tive procedure (line 5). The parameter MaxIterILS represents the maximum number
of consecutive perturbations allowed without improvements (line 8). This value is
calculated based on the number of customers and vehicles and on a given parameter

Algorithm 2: ILS-RVND

Procedure ILS-RVND(MaxIter, β)1

Initialize fleet2

v ← total number of vehicles3

for i ← 1 to MaxIter do4

s ← GenerateInitialSolution(v)5

s′ ← s6

iterILS ← 07

MaxIterILS ← ComputeMaxIterILS(n, v,β)8

while (iterILS ≤ MaxIterILS) do9

s ← RVND(s)10

if (unlimited fleet) then11

UpdateFleet()12

end13

if (f (s) < f (s′)) then14

s′ ← s15

iterILS ← 016

end17

s ← Perturb(s′)18

iterILS ← iterILS + 119

end20

if (f (s′) < f ∗) then21

s∗ ← s′22

end23

end24

return s∗25

end26
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β (see Sect. 6.1). The main ILS loop (lines 9–20) aims to improve the generated ini-
tial solution using a RVND procedure (line 10) in the local search phase combined
with a set of perturbation mechanisms (line 18). Notice that the perturbation is always
performed on the best current solution (s′) of a given iteration (acceptance criterion).

The next subsections provide a detailed explanation of the main components of
the ILS-RVND heuristic.

5.1 Constructive procedure

The constructive procedure makes use of two insertion criteria, namely the Modified
Cheapest Feasible Insertion Criterion (MCFIC) and the Nearest Feasible Insertion
Criterion (NFIC). Also, two insertion strategies were employed, specifically the Se-
quential Insertion Strategy (SIS) and the Parallel Insertion Strategy (PIS).

The pseudocode of the constructive procedure is presented in Algorithm 3. Let
the Candidate List (CL) be initially composed by all customers (line 2). Each route is
filled with a seed customer k, randomly selected from the CL (lines 4–7). An insertion
criterion and an insertion strategy is chosen at random (lines 8–9). An initial solution
is generated using the selected combination of criterion and strategy (lines 10–14). If
the solution s is infeasible we restart the constructive procedure (lines 15–17). If the
fleet is unlimited (FSM), an empty route associated to each type of vehicle is added
to the constructed solution s (line 18). These empty routes are necessary to allow a
possible fleet resizing during the local search phase.

Algorithm 3: GenerateInitialSolution

Procedure GenerateInitialSolution(v)1

Initialize the CL2

Let s = {s1, . . . , sv} be the set composed by v empty routes3

for v′ ← 1 to v do4

sv′ ← k ∈ CL selected at random5

Update CL // CL ← CL - {k}6

end7

InsertionCriterion ← MCFIC or NFIC // (chosen at random)8

InsertionStrategy ← SIS or PIS // (chosen at random)9

if (InsertionStrategy = SIS) then10

s ← SequentialInsertion(v, CL, InsertionCriterion)11

else12

s ← ParallelInsertion(v, CL, InsertionCriterion)13

end14

if (s is infeasible) then15

Go to line 216

end17

Add an empty route associated to each type of vehicle in s // Only for FSM18

return s19

end20
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5.1.1 Insertion criteria

The cost of inserting an unrouted customer k ∈ CL in a given route using the MCFIC
is expressed in Eq. 1, where function g(k) represents the insertion cost. The value
of g(k) is computed by the sum of two terms. The first computes the insertion cost
of the client k between every pair of adjacent customers i and j while the second
corresponds to a surcharge used to avoid late insertions of clients located far away
from the depot. The cost back and forth from the depot is weighted by a factor γ .

g(k) = (
cu
ik + cu

kj − cu
ij

) − γ
(
cu

0k + cu
k0

)
(1)

The NFIC directly computes the distance between a customer k ∈ CL and every
customer i that has been already included into the partial solution, that is g(k) = cu

ik

(Eq. 2). It is assumed that the insertion of k is always performed after i.

g(k) = cu
ik (2)

In both criteria, the insertion associated with the least-cost is done, i.e. min{g(k)|
k ∈ CL}.

5.1.2 Insertion strategies

In the SIS, only a single route is considered for insertion at each iteration. The pseu-
docode of the SIS is presented in Algorithm 4. If the insertion criterion corresponds to
the MCFIC, a value of γ is chosen at random within the discrete interval {0.00,0.05,

0.10, . . . ,1.65,1.70} (line 2). This interval was defined in Subramanian et al. (2010)
after some preliminary experiments. While the CL is not empty and there is at least
one customer k ∈ CL that can be added to the current partial solution without violat-
ing any constraint (lines 6–17), each route is filled with a customer selected using the
corresponding insertion criterion (lines 7–15). If the fleet is unlimited and the solu-
tion s is still incomplete, a new vehicle, chosen at random from the available types,
is added and the procedure restarts from line 6 (lines 18–22).

PIS differs from SIS because all routes are considered while evaluating the least-
cost insertion. Algorithm 5 illustrates the pseudocode of the PIS. While the CL is not
empty and there is at least one customer k ∈ CL that can be included in s (lines 5–12),
the insertions are evaluated using the selected insertion criterion and the customer
associated with the least-cost insertion is then included in the correspondent route v

(lines 6–10). The remainder of the code operates just as the SIS.

5.2 Local search

The local search is performed by a VND (Mladenovic and Hansen 1997) procedure,
which utilizes a random neighborhood ordering (RVND). Let N = {N(1), . . . ,N(r)}
be the set of neighborhood structures. Whenever a given neighborhood of the set
N fails to improve the incumbent solution, the RVND randomly chooses another
neighborhood from the same set to continue the search throughout the solution space.
In this case, N is composed only by inter-route neighborhood structures.
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Algorithm 4: SequentialInsertion

Procedure SequentialInsertion(v, CL, InsertionCriterion)1

if (InsertionCriterion = MCFIC) then2

γ ← random value within a given interval3

end4

v0 ← 15

while (CL �= ∅ and at least one customer k ∈ CL can be added to s) do6

for v′ ← v0 . . . v and CL �= ∅ do7

if (at least one customer k ∈ CL can be inserted into the vehicle v′) then8

Evaluate the value of each cost g(k) for k ∈ CL9

gmin ← min{g(k)|k ∈ CL}10

k′ ← customer k associated to gmin11

sv′ ← sv′ ∪ {k′}12

Update CL13

end14

end15

Update v016

end17

if (CL > 0 and the vehicle fleet is unlimited) then18

Add a new vehicle chosen at random // v ← v + 119

Update v0 // v0 ← v20

Go to line 621

end22

return s23

end24

Algorithm 5: ParallelInsertion

Procedure ParallelInsertion(v, CL, InsertionCriterion)1

if (InsertionCriterion = MCFIC) then2

γ ← random value within a given interval3

end4

while (CL �= ∅ and at least one customer k ∈ CL can be added to s) do5

Evaluate the value of each cost g(k) for k ∈ CL6

gmin ← min{g(k)|k ∈ CL}7

k′ ← customer k associated to gmin8

v′ ← route associated to gmin9

sv′ ← sv′ ∪ {k′}10

Update CL11

end12

if (CL > 0 and the vehicle fleet is unlimited) then13

Add a new vehicle chosen at random; {v ← v + 1}14

Go to line 515

end16

return s17

end18
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Algorithm 6: RVND

Procedure RVND(s)1

Update ADSs2

Initialize the Inter-Route Neighborhood List (NL)3

while (NL �= 0) do4

Choose a neighborhood N(η) ∈ NL at random5

Find the best neighbor s′ of s ∈ N(η)6

if (f (s′) < f (s)) then7

s ← s′8

s ← IntraRouteSearch(s)9

Update Fleet // Only for FSM10

Update NL11

else12

Remove N(η) from the NL13

end14

Update ADSs15

end16

return s17

end18

The pseudocode of the RVND procedure is presented in Algorithm 6. Firstly, a
Neighborhood List (NL) containing a predefined number of inter-route moves is ini-
tialized (line 3). In the main loop (lines 4–16), a neighborhood N(η) ∈ NL is chosen
at random (line 5) and then the best admissible move is determined (line 6). In case
of improvement, an intra-route local search is performed, the fleet is updated and the
NL is populated with all the neighborhoods (lines 7–12). Otherwise, N(η) is removed
from the NL (line 13). It is important to mention that the fleet is only updated for the
FSM. This update assures that there is exactly one empty vehicle of each type. A set
of Auxiliary Data Structures (ADSs) (see Sect. 5.2.1) is updated at the beginning of
the process (line 6) and whenever a neighborhood search is performed (line 5).

Let N ′ be a set composed by r ′ intra-route neighborhood structures. Algorithm 7
describes how the intra-route search procedure was implemented. At first, a neighbor-
hood list NL′ is initialized with all the intra-route neighborhood structures (line 2).
Next, while NL′ is not empty a neighborhood N ′(η) ∈ NL′ is randomly selected
and a local search is exhaustively performed until no more improvements are found
(lines 3–11).

5.2.1 Auxiliary Data Structures (ADSs)

In order to enhance the neighborhood search, some ADSs were adopted. The follow-
ing arrays store useful information regarding each route.

– SumDemand[ ]—sum of the demands. For example, if SumDemand[2] = 100, it
means that the sum of the demands of all customers of route 2 corresponds to 100.

– MinDemand[ ]—minimum demand. For example, if MinDemand[3] = 5, it means
that 5 is the least demand among all customers of route 3.
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Algorithm 7: IntraRouteSearch

Procedure IntraRouteSearch(s)1

Initialize the Intra-Route Neighborhood List (NL′)2

while (NL′ �= 0) do3

Choose a neighborhood N ′(η) ∈ NL′ at random4

Find the best neighbor s′ of s ∈ N ′(η)5

if f (s′) < f (s) then6

s ← s′7

else8

Remove N ′(η) from the NL′9

end10

end11

return s12

end13

– MaxDemand[ ]—maximum demand.
– MinPairDemand[ ]—minimum sum of demands of two adjacent customers. For

example, if MinPairDemand[1] = 10, it means that the least sum of the demands
of two adjacent customers of route 1 corresponds to 10.

– MaxPairDemand[ ]—maximum sum of demands of two adjacent customers.
– CumulativeDemand[ ][ ]—cumulative load at each point of the route. For exam-

ple, if CumulativeDemand[2][4] = 78, it means that the sum of the demands of the
first four customers of route 2 corresponds to 78.

– NeighborhoodStatus[ ][ ]—informs if the route has been modified after the neigh-
borhood has failed to find an improvement move involving the same route. For ex-
ample, if NeighborhoodStatus[1][3] = true, it means that the last time the neigh-
borhood N(1) was applied, no improvement move involving route 3 was found, but
this route was later modified by another neighborhood structure or by a perturba-
tion move. If NeighborhoodStatus[1][3] = false, it means that the route 3 did not
suffer any change after the last time N(1) was unsuccessful to find an improvement
move involving this route.

To update the information of the ADSs one should take into account only the
routes that were modified. Let n̄ be the total number of customers in the modified
routes. Except for the NeighborhoodStatus, the ADSs updating is as follows. For
each modified route, a verification is performed along the whole tour to update the
corresponding values of the ADSs. Hence, the computational complexity is of the or-
der of O(n̄). As for the NeighborhoodStatus, each route, the information regarding all
inter-routes neighborhoods are updated which results in a computational complexity
is of the order of of O(v̄|N |), where v̄ is the number of modified routes.

5.2.2 Inter-route neighborhood structures

Seven VRP neighborhood structures involving inter-route moves were employed.
Five of them are based on the λ-interchanges scheme (Osman 1993), which con-
sists of exchanging up to λ customers between two routes. To limit the number of
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possibilities we have considered λ = 2. Another one is based on the Cross-exchange
operator (Taillard et al. 1997), which consists of exchanging two segments of differ-
ent routes. Finally, a new neighborhood structure called, K-Shift, which consists of
transferring a set of consecutive customers from a route to another one, was imple-
mented.

The solution spaces of the seven neighborhoods are explored exhaustively, that is,
all possible combinations are examined, and the best improvement strategy is consid-
ered. The computational complexity of each one of these moves is O(n2).

In order to accelerate the local search, a set of conditions can be specified to avoid
the examination of moves that are known to be infeasible. It is in this context that
the ADSs play an important role. The information stored in these data structures
are used in the process of identifying unnecessary moves during the local search.
Each neighborhood structure has its own conditions but the idea is essentially the
same. Moreover, all of them share the condition that, given a inter-route movement
involving the routes r1 and r2 , it is worth examining a move using neighborhood N(η)

only if NeighborhoodStatus[η][r1] = true or NeighborhoodStatus[η][r2] = true.
Only feasible moves are admitted, i.e., those that do not violate the maximum

load constraints. Therefore, every time an improvement occurs, the algorithm checks
whether this new solution is feasible or not. This checking is trivial and it can be
performed in a constant time by just verifying if the sum of the customers demands
of a given route does not exceed the vehicle’s capacity when the same is leaving (or
arriving on) the depot.

The inter-route neighborhood structures are described next. In addition, the partic-
ular conditions of each neighborhood that must be satisfied to avoid evaluating some
infeasible moves are presented as well.

Shift(1,0) – N(1)—A customer k is transferred from a route r1 to a route r2. If
MinDemand[r1]+ SumDemand[r2] > Qu(r2) it means that transferring any customer
from r1 to r2 implies an infeasible solution. This fact is easy to verify because if even
the customer with the least demand cannot be transferred to the other route, it is clear
that the remaining customers also cannot. In addition, if dk + SumDemand[r2] >

Qu(r2) then there is no point in evaluating the transfer of k ∈ r1 to any position in r2,
since the vehicle load of r2 will always be violated. Thus, a verification should be
performed to avoid the evaluation of these infeasible moves.

Swap(1,1) – N(2)—Permutation between a customer k from a route r1 and a
customer l, from a route r2. To avoid evaluating infeasible moves one should ver-
ify if MinDemand[r1] − MaxDemand[r2] + SumDemand[r2] ≤ Qu(r2) and dk +
SumDemand[r2] − MaxDemand[r2] ≤ Qu(r2).

Shift(2,0) – N(3)—Two adjacent customers, k and l, are transferred from a route
r1 to a route r2. This move can also be seen as an arc transfer. In this case, the move
examines the transfer of both arcs (k, l) and (l, k). Before starting to evaluate the
customers transfer from r1 to r2 one should very if following conditions are met:
MinPairDemand[r1] + SumDemand[r2] ≤ Qu(r2).

Swap(2,1) – N(4)—Permutation of two adjacent customers, k and l, from a route
r1 by a customer k′ from a route r2. As in Shift(2,0), both arcs (k, l) and (l, k)

are considered. The evaluation of some infeasible moves are avoided by checking
if MinPairDemand[r1] − MaxDemand[r2] + SumDemand[r2] ≤ Qu(r2).
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Swap(2,2) – N(5)—Permutation between two adjacent customers, k and l, from a
route r1 by another two adjacent customers k′ and l′, belonging to a route r2. All the
four possible combinations of exchanging arcs (k, l) and (k′, l′) are considered. To
avoid evaluating some infeasible moves the following conditions must be satisfied:
MinPairDemand[r1] − MaxDemand[r2] + SumDemand[r2] ≤ Qu(r2).

Cross – N(6)—The arc between adjacent clients k and l, belonging to a route
r1, and the one between k′ and l′, from a route r2, are both removed. Next, an arc
is inserted connecting k and l′ and another is inserted linking k′ and l. The vehicle
loads of both routes are computed in constant time using the ADSs SumDemand and,
CumulativeDemand.

K-Shift – N(7)—A subset of consecutive customers K is transferred from a route
r1 to the end of a route r2. In this case, it is assumed that the dependent and fixed
costs of r2 is smaller than those of r1. It should be pointed out that the move is also
applied if r2 is an empty route.

5.2.3 Intra-route neighborhood structures

Five well-known intra-route neighborhood structures were adopted. The set N ′ is
composed by Or-opt (Or 1976), 2-opt and exchange moves. Since we evaluate all
possible moves, the computational complexity of these local search procedures is
O(n̄2). Their description is as follows.

Reinsertion—One, customer is removed and inserted in another position of the
route.

Or-opt2—Two adjacent customers are removed and inserted in another position
of the route.

Or-opt3—Three adjacent customers are removed and inserted in another position
of the route.

2-opt—Two nonadjacent arcs are deleted and another two are added in such a way
that a new route is generated.

Exchange—Permutation between two customers.

5.3 Perturbation mechanisms

A set P of three perturbation mechanisms were adopted. Whenever the Perturb()
function is called, one of the moves described below is randomly selected. It is worth
emphasizing that these perturbations are different from those employed by Subrama-
nian et al. (2010).

Multiple-Swap(1,1) – P (1)—Multiple random Swap(1,1) moves are performed in
sequence. After some preliminary experiments, the number of successive moves was
empirically set to be chosen from the interval {0.5v,0.6v, . . . ,1.4v,1.5v}.

Multiple-Shift(1,1) – P (2)—Multiple Shift(1,1) moves are performed in sequence
randomly. The Shift(1,1) consists in transferring a customer k from a route r1 to a
route r2, whereas a customer l from r2 is transferred to r1. In this case, the number of
moves is randomly selected from the same interval of P (1). This perturbation is more
stronger than the previous one since it admits a larger number of moves.
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Split – P (3)—A route r is divided into smaller routes. Let M ′ = {2, . . . ,m} be
a subset of M composed by all vehicle types, except the one with the smallest ca-
pacity. Firstly, a route r ∈ s (let s = s′) associated with a vehicle u ∈ M ′ is selected
at random. Next, while r is not empty, the remaining customers of r are sequen-
tially transferred to a new randomly selected route r ′ /∈ s associated with a vehicle
u′ ∈ {1, . . . , u − 1} in such a way that the capacity of u′ is not violated. The new
generated routes are added to the solution s while the route r is removed from s. The
procedure described is repeated multiple times where the number of repetitions is
chosen at random from the interval {1,2, . . . , v}. This perturbation was applied only
for the FSM, since it does not make sense for the HVRP.

Every time a perturbation move is applied, we verify if the perturbed solution is
feasible or not. If it is feasible then the perturbation phase is terminated. Otherwise,
the same perturbation move is reapplied until a feasible move is performed.

6 Computational results

The algorithm ILS-RVND was coded in C++ (g++ 4.4.3) and executed in an Intel®
Core™ i7 Processor 2.93 GHz with 8 GB of RAM memory running Ubuntu Linux
10.04 (kernel version 2.6.32-22). The developed heuristic we tested in well-known
instances, namely those proposed by Golden et al. (1984) and Taillard (1999). The
latter introduced dependent costs and established a limit for the number of vehicles
of each type. Table 1 describes the characteristics of these instances. The values of
MaxIter and MaxIterILS were calibrated as described in Sect. 6.1. The impact of the
perturbation mechanisms is shown in Sect. 6.2. For each instance, the proposed algo-
rithm was executed 30 times and the results are presented in Sect. 6.4. New improved
solutions are reported in Appendix.

In Sect. 6.4 we also compare the results of our solution approach with the best
known algorithms presented in the literature, namely those of Taillard (1999), Taran-
tilis et al. (2004), Choi and Tcha (2007), Li et al. (2007), Imran et al. (2009), Liu
et al. (2009), Brandão (2009) and Prins (2009b). These algorithms were respec-
tively executed in a Sun Sparc workstation 50 MHz, Pentium II 400 MHz, Pen-
tium IV 2.6 GHz, Athlon 1.0 GHz, Pentium M 1.7 GHz, Pentium IV 3.0 GHz,
Pentium M 1.4 GHz and Pentium IV M 1.8 GHz. Since they were executed in
different computers, a comparison in terms of CPU time becomes quite difficult.
Nevertheless, in an attempt of performing an approximate comparison, we made
use of the list of computers available in Dongarra (2010), where the author re-
ports the speed, in Millions of Floating-Point Operations per Second (Mflop/s),
of various computers. As for the models that are not in the list, we adopted the
speed of those with similar configuration. Therefore, we assume that the speed of
the computers are: 27 Mflop/s—Sun Sparc workstation 50 MHz; 262 Mflop/s—
Pentium II 400 MHz; 2266 Mflop/s—Pentium IV 2.6 GHz; 1168 Mflop/s—
Athlon 1.0 GHz; 1477 Mflop/s—Pentium M 1.7 GHz; 3181 Mflop/s—Pentium IV
3.0 GHz; 1216 Mflop/s—Pentium M 1.4 GHz; 1564 Mflop/s—Pentium IV M
1.8 GHz. In the case of our Intel i7 2.93 GHz, we ran the program utilized by Don-
garra (2010) and we obtained a speed of 5839 Mflop/s.
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In the tables presented hereafter, Inst. No. denotes the number of the test-problem,
n is the number of customers, BKS represents the best known solution reported in the
literature, Best Sol. and Time indicate, respectively, the best solution and the origi-
nal computational time in seconds associated to the corresponding work, Sol. is the
average solution obtained by ILS-RVND, Gap denotes either the gap between the
best solution found by a given algorithm and the BKS, either the mean of the gaps
between the best solutions and the BKS, Avg. Gap corresponds to the gap between
the average solutions and the BKSs, Avg. Time represents the average computational
time in seconds. #Best is the number of BKS found or improved, #FSM Inst. and
#HVRP Inst. correspond, respectively, to the total number of FSM and HVRP in-
stances. Scaled time indicates the scaled time in seconds of each computer, with
respect to our 2.93 GHz. The best solutions are highlighted in boldface and the solu-
tions improved by ILS-RVND are underlined.

6.1 Parameter tuning

A set of instances with varying sizes was selected for tuning the main parameters of
the ILS-RVND heuristic, that is, MaxIter and MaxIterILS. It has been empirically
observed that the suitable values of MaxIterILS depends on the size of the instances,
more precisely, on the number of customers and vehicles. For the sake of simplicity,
we have decided to use an intuitive and straightforward linear expression for comput-
ing the value of MaxIterILS according to n and v, as shown in Eq. 3.

MaxIterILS = n + β × v (3)

The parameter β in Eq. 3 corresponds to a non-negative integer constant that indi-
cates the level of influence of the number of vehicles v in the value of MaxIterILS.

Table 2 Average gap and time in seconds between the solutions obtained by each β with MaxIter = 350

β Inst. No. Average

4 13 17 20

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Gap Time Gap Time Gap Time Gap Time Gap Time

1 1.68% 1.55 0.63% 13.26 0.60% 27.20 0.74% 50.84 0.91% 23.21

2 0.98% 1.87 0.48% 15.98 0.59% 29.88 0.72% 55.39 0.69% 25.78

3 0.49% 2.21 0.40% 18.55 0.57% 32.58 0.74% 60.17 0.55% 28.38

4 0.72% 2.46 0.37% 20.98 0.49% 35.18 0.63% 64.48 0.55% 30.78

5 0.00% 2.82 0.43% 23.65 0.49% 37.65 0.62% 69.13 0.38% 33.31

6 0.00% 3.09 0.33% 25.84 0.47% 40.18 0.62% 73.82 0.36% 35.73

7 0.24% 3.36 0.32% 28.20 0.45% 42.57 0.59% 77.79 0.40% 37.98

8 0.00% 3.65 0.29% 30.58 0.45% 45.58 0.61% 82.23 0.34% 40.51

9 0.00% 3.91 0.30% 32.85 0.43% 47.44 0.51% 87.05 0.31% 42.81

10 0.00% 4.23 0.28% 34.89 0.40% 50.11 0.58% 90.61 0.31% 44.96
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Table 3 Average gap and time in seconds between the solutions obtained by each β with MaxIter = 400

β Inst. No. Average

4 13 17 20

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Gap Time Gap Time Gap Time Gap Time Gap Time

1 2.13% 1.68 0.51% 14.43 0.64% 29.61 0.78% 55.19 1.02% 25.23

2 0.50% 2.03 0.49% 17.49 0.60% 32.56 0.67% 60.32 0.56% 28.10

3 0.28% 2.40 0.42% 20.32 0.56% 35.44 0.65% 65.43 0.48% 30.90

4 0.48% 2.71 0.33% 22.87 0.54% 38.12 0.64% 70.29 0.50% 33.49

5 0.01% 3.02 0.30% 25.42 0.51% 41.00 0.58% 75.01 0.35% 36.11

6 0.00% 3.38 0.31% 28.18 0.46% 43.83 0.58% 79.81 0.34% 38.80

7 0.23% 3.67 0.28% 30.71 0.47% 46.38 0.53% 84.48 0.38% 41.31

8 0.23% 3.94 0.26% 33.33 0.48% 49.23 0.52% 89.44 0.37% 43.98

9 0.00% 4.30 0.29% 35.94 0.48% 51.73 0.49% 94.27 0.32% 46.56

10 0.00% 4.61 0.31% 38.26 0.48% 54.22 0.51% 98.00 0.33% 48.77

Four instances with varying number of customers (20–100) and vehicles were
chosen as a sample for tuning the values of the parameters. For each of these test-
problems we executed ILS-RVND 10 times in all of their respective HFVRP variants.
Three values of MaxIter were tested, specifically 350, 400 and 450. For each of these,
ten values of β were evaluated.

In order to select an attractive parameters configuration we took into account the
quality of the solutions obtained in each variant, measured by the average gap be-
tween the solutions obtained using a given β value and the respective best solution
found in the literature, and the computational effort, measured by the average CPU
time of the complete execution of the algorithm. The gap was calculated using Eq. 4.

gap = ILS-RVND_solution − literature_solution

literature_solution
× 100 (4)

Table 2 contains the results of the average gap and the average CPU time for
the tests involving MaxIter = 350, while those obtained for MaxIter = 400 and
MaxIter = 450 are presented in Tables 3 and 4, respectively.

From Tables 2–4 we can observe that the quality of the solutions and the com-
putational time tend to increase with the value of β and MaxIter. This behavior was
obviously expected since more trials are given to the algorithm when the values of
these two parameters increase. However, we can also verify that the variation of the
average gap tends to be quite small from a given value of β . For example, in the
case of MaxIter = 350 and MaxIter = 400, it is possible to notice that there are no
significant modifications in the average gaps from β = 5, wheres the same happens
from β = 4, in the case of MaxIter = 450. Although these three configurations had
produced similar results, we decided to choose MaxIter = 400 and β = 5 because it
was the one that obtained the smaller average gap when compared to the other two.
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Table 4 Average gap and time in seconds between the solutions obtained by each β with MaxIter = 450

β Inst. No. Average

4 13 17 20

Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.

Gap Time Gap Time Gap Time Gap Time Gap Time

1 1.69% 1.95 0.50% 16.51 0.55% 33.90 0.66% 62.94 0.85% 28.82

2 0.71% 2.32 0.46% 19.79 0.60% 37.05 0.62% 68.53 0.60% 31.92

3 0.50% 2.73 0.42% 22.98 0.53% 40.58 0.61% 74.60 0.51% 35.22

4 0.01% 3.06 0.35% 26.28 0.49% 43.85 0.58% 80.38 0.36% 38.39

5 0.01% 3.47 0.36% 29.08 0.50% 47.02 0.58% 86.19 0.36% 41.44

6 0.01% 3.86 0.29% 32.13 0.45% 49.82 0.61% 91.57 0.34% 44.34

7 0.01% 4.20 0.30% 35.05 0.44% 53.18 0.53% 97.23 0.32% 47.42

8 0.00% 4.54 0.29% 37.98 0.45% 56.10 0.54% 102.13 0.32% 50.19

9 0.00% 4.91 0.27% 40.44 0.39% 59.05 0.53% 107.34 0.30% 52.93

10 0.00% 5.31 0.25% 43.56 0.37% 62.07 0.45% 112.42 0.27% 55.84

6.2 Impact of the perturbation mechanisms

In this subsection we are interested in evaluating the impact of the set of perturbation
mechanisms in the HVRP and FSM. We ran the ILS-RVND algorithm with each per-
turbation separately and also with more than one perturbation included and the results
for FSM and HVRP are presented in Tables 5 and 6, respectively. All instances were
considered and we executed the ILS-RVND 30 times for each of the five HFVRP vari-
ants using β = 5 and MaxIter = 400. It is noteworthy to remember that perturbation
Split (P (3)) is only applied for the FSM.

According to Table 5 it can be verified that ILS-RVND clearly had a better perfor-
mance, in terms of solution quality, when all perturbations were included, as can be
seen by the values of the average gaps and the number of best solutions found. From
Table 6 it can be seen that the three configurations had a similar performance in terms
of average solutions, but the version that includes P (1) +P (2) outperformed the other
two both in terms of best solutions and computational time.

6.3 Deterministic Ordering versus Random Ordering of the Variable Neighborhood
Descent

In order to illustrate the impact of the RVND in the performance of the proposed solu-
tion approach we ran two versions of our algorithm 30 times in all instances of each of
the five HFVRP variants. The first version employs the random neighborhood order-
ing (RVND) in the local search phase and it makes use of the values of MaxIter and
MaxIterILS specified in Sect. 6.1. The second one employs the traditional VND as
a local search procedure with the following deterministic order N(1),N(2), . . . ,N(7).
However, a different stopping criterion was adopted with a view of performing a fair
comparison between both versions. The value of MaxIterILS is the same, but instead
of MaxIter, we took the average time obtained for each instance when running the
first version and set as an execution time limit for the second version.
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Table 6 Impact of perturbation mechanism on HVRP instances

Inst. n P (1) P (2) P (1) + P (2)

No. Gap Avg. Avg. Gap Avg. Avg. Gap Avg. Avg.

Gap Time Gap Time Gap Time

13 50 0.00% 0.17% 19.55 0.00% 0.06% 21.50 0.00% 0.09% 19.16

14 50 0.00% 0.01% 12.81 0.00% 0.01% 13.09 0.00% 0.01% 11.24

15 50 0.00% 0.00% 14.63 0.00% 0.00% 14.34 0.00% 0.00% 12.52

16 50 0.00% 0.55% 14.04 0.00% 0.43% 13.72 0.00% 0.20% 12.26

17 75 0.05% 0.31% 34.52 0.07% 0.26% 34.19 0.00% 0.31% 29.75

18 75 0.00% 0.55% 40.26 0.00% 0.34% 42.72 0.00% 0.45% 37.36

19 100 0.11% 0.12% 89.96 0.11% 0.11% 83.86 0.11% 0.12% 70.69

20 100 0.38% 0.72% 80.75 0.32% 0.67% 75.71 −0.19% 0.66% 66.11

Average 0.07% 0.30% 38.32 0.06% 0.24% 37.39 −0.01% 0.23% 32.39

#Best/#HVRP Inst. 12/16 12/16 15/16

Table 7 Deterministic Ordering versus Random Ordering of the Variable Neighborhood Descent

Variant ILS-VND ILS-RVND

Gap Avg. #Best/ Gap Avg. #Best/

Gap #Inst. Gap #Inst.

HVRPFD 0.29% 0.67% 2/8 −0.05% 0.24% 8/8

HVRPD 0.59% 1.23% 2/8 0.03% 0.22% 7/8

FSMFD 0.07% 0.19% 6/12 0.00% 0.09% 11/12

FSMF 0.29% 0.43% 6/12 0.01% 0.23% 9/12

FSMD 0.43% 0.92% 6/12 0.00% 0.17% 11/12

Average 0.33% 0.69% 0.00% 0.19%

Table 7 presents the results obtained using the deterministic neighborhood or-
dering (ILS-VND) and those found using the random neighborhood ordering (ILS-
RVND). It can be observed that the ILS-RVND clearly outperformed the ILS-VND
in all variants. A possible explanation to this fact is that ILS-VND converges prema-
turely to poor local optima and therefore it tends to generate, on average, low quality
solutions when compared to ILS-RVND, which in turn is less-likely to produce solu-
tions that get easily trapped in local optima.

6.4 Comparison with the literature

In this subsection we compare the results obtained by ILS-RVND with those found in
the literature. It is important to mention that some authors, like Tarantilis et al. (2004),
Li et al. (2007) and Brandão (2009), reported the results of single-runs. Moreover,
others, like (Prins 2009a), reported the average gap between the average solutions
and the previous BKS, but not the average solutions themselves.
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Table 8 Results for HVRPFD instances

Inst. n BKS ILS-RVND

No. Best Sol. Time Gap Sol.b Timeb Gapb

13 50 3185.09a 3185.09 18.87 0.00% 3189.17 19.04 0.13%

14 50 10107.53a 10107.53 10.58 0.00% 10107.94 11.28 0.00%

15 50 3065.29a 3065.29 11.78 0.00% 3065.34 12.48 0.00%

16 50 3265.41a 3265.41 11.87 0.00% 3278.06 12.22 0.39%

17 75 2076.96a 2076.96 29.44 0.00% 2083.19 29.59 0.30%

18 75 3743.58a 3743.58 35.75 0.00% 3758.84 36.38 0.41%

19 100 10423.32 10420.34 70.55 −0.03% 10421.39 73.66 −0.02%

20 100 4806.69 4788.49 66.88 −0.38% 4839.53 68.46 0.68%

Avg. time/Avg. gap 31.97 −0.05% 32.89 0.24%

aOptimality proved

bAverage of 30 runs

6.4.1 HVRPFD

To our knowledge the HVRPFD was only examined by Baldacci and Mingozzi
(2009). From Table 8 it can be verified that the ILS-RVND found all proven opti-
mal solutions and improved the results of the two instances in which the optimal
solution was not proved by Baldacci and Mingozzi (2009).

6.4.2 HVRPD

Tables 9 and 10 present a comparison between the results found by ILS-RVND and
the best heuristics proposed in the literature, namely those of Taillard (1999), Taran-
tilis et al. (2004) and Prins (2009a). Although ILS-RVND was capable of finding 7
of the 8 BKSs in a competitive computational time, the average gap show that our
algorithm is not as effective for the HFVRPD as those developed by Li et al. (2007)
and Prins (2009b) that managed to obtain better gaps in a single-run.

6.4.3 FSMFD

In Tables 11 and 12 a comparison is performed between the results found by ILS-
RVND and the best heuristics available in the literature, particularly the ones of Choi
and Tcha (2007), Prins (2009a) and Imran et al. (2009). The ILS-RVND failed to
equal the results of two instances but it was capable to improve the results of another
one. When individually comparing the ILS-RVND with each one of these algorithms,
one can verify that the ILS-RVND produced, on average, highly competitive solu-
tions. However, in terms of computational time, our algorithm is still slower than the
SMA-U1 of Prins (2009a).
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Table 10 Summary of results for HVRPD

Algorithm Best Run Average1

Gap Scaled Time BKS Found BKS Improved Gap Scaled Time

HCG (Taillard 1999) 0.93% – 1 0 2.50% 9.30

BATA (Tarantilis et al. 2004) 0.62% 27.24 1 0 – –

HRTR (Li et al. 2007) 0.03% 57.16 7 0 – –

SMA-D2 (Prins 2009a) 0.08% 25.38 6 0 – –

ILS-RVND 0.03% 30.47 7 0 0.22% 31.89

1Average of 5 runs for Taillard (1999) and of 30 runs for ILS-RVND

6.4.4 FSMF

Tables 13 and 14 illustrate the results obtained by the ILS-RVND for the FSMF.
These results are compared with those of Choi and Tcha (2007), Brandão (2009),
Prins (2009b), Imran et al. (2009), and Liu et al. (2009). It can be seen that the pro-
posed algorithm found one new best solution, equaled the results of 8 instances, but
it failed to obtain the best known solutions in another 3. The average results are quite
competitive in terms of solution quality when compared to the other approaches. In
addition, except for the algorithm of Prins (2009a), ILS-RVND outperformed all oth-
ers in terms of computational time.

6.4.5 FSMD

The best results obtained in the literature for the FSMD using heuristic approaches
were reported by Choi and Tcha (2007), Brandão (2009), Prins (2009a), Imran et al.
(2009) and Liu et al. (2009). These results along with those found by ILS-RVND are
presented in Tables 15 and 16. In this variant the optimal solutions were determined
by Baldacci and Mingozzi (2009) for all instances. From Table 15 it can be observed
that, except for one instance, ILS-RVND was capable of finding all optimal solu-
tions. Even though ILS-RVND performed, on average, slower than the algorithms of
Choi and Tcha (2007) and Prins (2009b), the results obtained are quite satisfactory,
especially in terms of solution quality.

7 Concluding remarks

This article dealt with Heterogeneous Fleet Vehicle Routing Problem (HVRFP). This
kind of problem often arises in practical applications and one can affirm that this
model is more realistic than the classical homogeneous Vehicle Routing Problem.
Five different HFVRP variants involving limited and unlimited fleets were consid-
ered. These variants were solved by an Iterated Local Search algorithm that uses
Variable Neighborhood Descent with random neighborhood ordering (RVND) in the
local search phase.
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Table 12 Summary of results for FSMFD

Algorithm Best Run Average1

Gap Scaled BKS Found BKS Improved Gap Scaled

Time Time

CG (Choi and Tcha 2007) 0.08% 35.98 9 0 0.11% 42.82

SMA-U1 (Prins 2009b) 0.02% 6.18 7 0 – 6.86

VNS1 (Imran et al. 2009) 0.04% 117.92 8 0 – –

ILS-RVND 0.00% 24.50 10 1 0.09% 24.64

1Average of 5 runs for both Choi and Tcha (2007) and Prins (2009b) and of 30 runs for ILS-RVND

The proposed algorithm (ILS-RVND) was tested on 52 well-known benchmark in-
stances with up to 100 customers. The ILS-RVND was found capable to improve the
results of 4 instances and to equal the results of another 42. Furthermore, we believe
that the developed solution approach has a quite simple structure and it also relies
on very few parameters. This not only facilitates the reproduction of the procedure,
but it also reduces the tunning efforts. In addition, we can verify that the algorithm
has proven to be flexible, as can be observed by the robust and competitive results
obtained in each of the five HFVRP variants considered in this work. According to
Cordeau et al. (2002), when it comes to VRP heuristics, simplicity and flexibility are
just important as solution quality and computational time.

As for future work, we intend to improve our algorithm to solve large-sized in-
stances, as well as other HFVRP variants that include additional features such as
time windows, pickup and delivery services, multiple depots and so forth.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable com-
ments that considerably improved the quality of this paper. This research was partially supported by CNPq,
CAPES and FAPERJ.

Appendix: New best solutions

A.1 HVRPFD

Instance 19: 8 routes, cost 10420.34
(vehicle type): list of customers.
(A): 0 87 42 14 38 43 15 57 2 0
(A): 0 60 83 8 46 45 17 84 5 99 96 6 0
(A): 0 12 80 68 29 24 25 55 54 0
(B): 0 52 7 19 11 64 49 36 47 48 82 18 89 0
(B): 0 27 69 1 70 30 20 66 32 90 63 10 62 88 31 0
(B): 0 76 77 3 79 78 34 35 65 71 9 51 81 33 50 0
(C): 0 94 95 59 93 85 61 16 86 44 91 100 98 37 92 97 13 0
(C): 0 53 58 40 21 73 72 74 22 41 75 56 23 67 39 4 26 28 0

Instance 20: 12 routes, cost 4788.49
(vehicle type): list of customers.
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Table 14 Summary of results for FSMF

Algorithm Best Run Average1

Gap Scaled Time BKS Found BKS Improved Gap Scaled Time

CG (Choi and Tcha 2007) 0.06% 58.34 8 0 0.17% 58.36

TSA1 (Brandão 2009) 0.08% 39.95 6 0 – –

SMA-D1 (Prins 2009b) 0.10% 11.39 8 0 – 10.92

VNS1 (Imran et al. 2009) 0.05% 126.60 9 0 – –

GA (Liu et al. 2009) 0.01% – 10 0 0.19% 107.96

ILS-RVND 0.01% 30.35 8 1 0.23% 30.48

1Average of 5 runs for both Choi and Tcha (2007) and Prins (2009b), of 10 runs for Liu et al. (2009) and
of 30 runs for ILS-RVND

(A): 0 73 74 56 22 41 57 2 0
(A): 0 42 15 43 38 14 91 6 0
(A): 0 55 25 24 29 34 78 79 0
(A): 0 28 76 77 26 0
(A): 0 60 84 17 45 8 83 18 0
(B): 0 27 50 33 81 3 68 80 12 0
(B): 0 46 47 36 49 64 63 90 32 70 31 0
(B): 0 52 7 82 48 19 11 62 10 88 0
(B): 0 1 51 9 35 71 65 66 20 30 69 0
(C): 0 54 4 39 67 23 75 72 21 40 53 0
(C): 0 58 13 87 97 98 85 93 59 99 96 0
(C): 0 89 5 61 16 86 44 100 37 92 95 94 0

A.2 FSMFD

Instance 20: 25 routes, cost 4153.02
(vehicle type): list of customers.
(A): 0 16 86 17 60 0
(A): 0 70 90 63 11 62 88 0
(A): 0 4 39 25 55 0
(A): 0 13 58 53 0
(A): 0 52 48 18 0
(A): 0 93 61 100 37 0
(A): 0 83 45 84 5 0
(A): 0 51 9 66 20 0
(A): 0 69 1 50 76 28 0
(A): 0 68 80 54 0
(A): 0 31 27 0
(A): 0 89 6 96 59 0
(A): 0 77 3 29 24 12 0
(A): 0 91 44 38 14 92 0
(A): 0 21 74 75 22 41 0
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(A): 0 8 46 36 49 64 7 0
(A): 0 40 73 72 26 0
(A): 0 19 47 82 0
(A): 0 2 57 15 43 42 87 0
(A): 0 98 85 99 0
(A): 0 30 32 10 0
(A): 0 56 23 67 0
(A): 0 97 95 94 0
(A): 0 33 81 79 0
(A): 0 71 65 35 34 78 0

A.3 FSMF

Instance 20: 18 routes, cost 4037.90
(vehicle type): list of customers.
(A): 0 29 79 3 77 0
(A): 0 41 22 75 74 21 0
(A): 0 97 95 94 0
(A): 0 27 50 76 28 0
(A): 0 13 58 53 0
(A): 0 89 5 96 6 0
(A): 0 99 93 59 0
(A): 0 85 100 92 0
(A): 0 82 48 7 0
(A): 0 40 73 72 26 0
(A): 0 68 80 54 0
(A): 0 52 18 83 45 17 84 60 0
(A): 0 2 57 15 43 42 87 0
(B): 0 88 62 19 11 64 49 36 47 46 8 0
(B): 0 33 81 78 34 35 65 71 9 51 1 69 0
(B): 0 31 10 63 90 32 66 20 30 70 0
(B): 0 37 98 91 44 14 38 86 16 61 0
(B): 0 4 56 23 67 39 25 55 24 12 0
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