An Improved Evolutionary Algorithm with Data Mining for a Vehicle Routing
Problem

L. H. C. Merschmann, E. H. Marinho, H. G. Santos, L. M. A. Drummond, L. S. Ochi, F. Dalboni
Computing Institute — Fluminense Federal University
Niterdi, Rio de Janeiro, Brazil
{Imerschmann, emarinho, hsantos, lucia, satoru}@jic.uff.br, dalboni@openlink.com.br

Abstract

The aim of this work is to present some alternatives
to improve the performance of an Evolutionary
Algorithm applied to the problem known as QOil
Collecting Vehicle Routing Problem. Some proposals
based on the insertion of Local Search and Data
Mining modules in a Genetic Algorithm are presented.
Four algorithms were developed: a Genetic
Algorithm, a Genetic Algorithm with a Local Search
procedure, a Genetic Algorithm including a Data
Mining module and a Genetic Algorithm including
Local Search and Data Mining. The results
demonstrate that the incorporation of Data Mining
and Local Search modules in GA improved the
solution quality produced by this method.

1. Introduction

Concerning oil exploitation, there is a class of
onshore wells called artificial lift wells where the use
of auxiliary methods for the elevation of fluids (oil and
water) is necessary. In this case, a fixed system of
beam pump is used when the well has a high
productivity. Because oil is not a renewable product,
the production of such wells will diminish until the
utilization of equipments permanently allocated to
them will become economically unfeasible. The
exploitation of low productivity wells can be done by
mobile equipment coupled to a truck. Usually the
collector mobile is not able to visit all wells in a single
day. In this context, arises the problem called Oil
Collecting Vehicle Routing Problem (OCVRP).

The OCVRP can be modeled by a
graph G = (X,U), where the vertices correspond to

the wells and each edge represents the road linking

two wells. Each vertex i € X has an associated value v;
€ R which corresponds to the level of oil in the well i
and each edge {i, j} € U has a value #; € R", which
represents the time to travel between wells i and j.

We describe OCVRP as the problem of routing a
vehicle starting and finishing at the same location,
denominated Oil Treatment Station (OTS), where the
separation of oil from water occurs. Visiting all the
wells from a subset J < X, the aim is to maximize the
amount of collected oil without violating the
constraints set which include daily time limit of work
[3], besides the non-formation of subtours
disconnected from origin as in the Traveling Salesman
Problem (TSP) [15]. The OCVRP can be considered as
a generalization of TSP which is classified as NP-
hard. In this way, the application of exact methods
becomes limited, justifying the use of heuristics
techniques, such as Evolutionary Algorithms (EAs).

The literature presents some similar problems such
as the Traveling Purchaser Problem [9], the Prize
Collecting Problem [4] and the Orienteering Problem
[12]. It has been shown that this kind of problem,
where only a subset of vertices are included in the
solution, can be efficiently solved by evolutionary
metaheuristics [8,17]. In this work we propose
alternatives to improve the performance of EAs. For
this purpose, we implemented four versions of Genetic
Algorithms (GAs) to solve the OCVRP. Initially we
describe a GA and afterwards, three improved
versions, GA with Local Search, GA with Data
Mining and GA with Data Mining and Local Search.

2. Evolutionary Algorithms

Evolutionary algorithms and the GAs, its most
popular representative, are part of the research area of
Artificial Intelligence inspired by the Natural
Evolution Theory and Genetics, known as

Evolutionary Computation. Those algorithms try to
simulate some stages of Darwin’s Natural Selection
and have been used in several areas to solve problems
considered intractables (NP-complete and NP-hard),
although its traditional versions do not demonstrate
too much efficiency in the resolution of high
complexity combinatorial optimization problems
[7,11,14].

GA is an iterative heuristic procedure in which
selection, crossover and mutation operators are
systematically applied to a population of individuals.
These individuals, also called chromosomes, often
encode different solutions to the problem. Each
position in the chromosome is called gene. The
solution quality is measured by means of a function,
called fitness function. Through the application of
genetic operators, the search space is explored to find
good solutions for the problem in question.

In order to improve the performance of GA,
researchers have proposed variants such as Memetic
Algorithms [17], Scatter Search [10] and Population
Heuristics [5].

2.1. Genetic Algorithm

This section describes an overview of the GA
proposed to solve the OCVRP.

In order to represent a solution, each individual is
defined by a variable size list of integer numbers,
where the genes correspond to wells pertaining to
route coded by an individual. The last gene of each
individual always represents the Oil Treatment
Station, using 0 to code it. The position of a well in
this list represents its order in the route. An example
of genetic representation is showed in Figure 1. In this
case, the following route is represented: OTS — well 16
— well 34 — well 21 — well 17 — well 76 — well 03 —
well 58 — well 44 — OTS. Note that the route always
starts at OTS, in spite of the first gene not
representing it.

(16 34 |21 |17][76 | 3 | 58 44 0 |

Figure 1. Sample individual

To generate the initial population, individuals are
constructed using an iterative procedure. They are
generated considering a greedy criterion which is used
to define the well that will be included in the solution
being constructed. This criterion is based on v/,
ratio, where v; is the production rate of the candidate
well i and #; is the time spent to travel from the last
well j included in the partial solution to the well i.
Thus, at each iteration, a well is selected from a list

that contains all wells not yet included in the solution,

with v; /t;; ratio in the range [7in 7max]. ¥ being the
greatest v; /t;; ratio among all wells not yet included in
the solution and 7 being the smallest ratio among

these same wells then 7,,;,= 7 - o (¥ — r) and 7, =

7. The o parameter should be selected in the range
[0,1], allowing the choice of the randomization degree
of individual generation. This process is executed
while the total time consumed on the route being
constructed has not reached the time limit (OCVRP
constraint).

Our GA uses a genetic operator different from
traditional crossover operator. A new individual
(offspring) is generated from np solutions (parents) of
the current population, where np varies from one up to
the size of the population. Each parent solution is
chosen by a tournament procedure that selects the
fittest individual from a set of & individuals randomly
selected from the population.

The crossover operator proposed here combines
information from parent solutions and the heuristic
criterion employed in the constructive phase, as
follows: during each iteration of offspring generation,
a well is chosen to take part in the route. This well is
randomly chosen from a list of remaining wells taking
into account a probability distribution that favors the
addition of wells with the highest y; = (1+w;,)*(v; /
t;;), where w;; is the frequency which well i (candidate
well) is the successor of well j (last well added to the
partial solution) in parent solutions. The probability of
chosing a given well is proportional to the position of
this well in a list sorted by non-ascending order of the
greedy criterion v;, as suggested in [6]. In this work,
polynomial distribution probability was chosen. This
process is executed while the total time consumed on
the route being constructed has not reached the time
limit. It is important to note that our crossover
operator does not rely only on information from parent
solutions, allowing the occurrence of offsprings with
genetic code not available on parents. Thus, there is
no need of incorporating a mutation operator.

During the evolutionary process, the population
remains a fixed size, i.e., the insertion of B new
individuals substitutes the 3 worst individuals in the
population.

2.2. Genetic Algorithm with Local Search

Local search is a post-optimization procedure that
allows a systematic search in a solution space by using

a neighborhood structure.

In this work two neighborhood structures were
proposed, aimed at increasing the amount of collected
oil for a feasible solution for the problem (base
solution). The pseudo-code shown in Figure 2 depicts
how both neighborhood structures are systematically
applied. The process starts with the first neighborhood
(k=1) and whenever an improvement movement is
found, it restarts the search in the first neighborhood.
When no improvement movement is found, it proceeds
to the next neighborhood or finishes the search (if
k=2). In both neighborhoods, a list L, of wells not yet
included in the current solution is created. In the first
neighborhood, we try to add in the current solution
each well pertaining to list Z,, searching for the first
possible position for insertion. In the second
neighborhood, we try to exchange each well from the
current solution with one from list L,..

1. Procedure LocalSearch

2. Input: individual

3. Select the neighborhood structures Ny, k= {1, 2};
4. s« individual; k < 1;

5. whilek <2 do

6. s" < Firstlmprovement(Ni(s));
7. if f{s") > f(s) then

8. s« 5’

9. k<« 1;

10. else

11. k<« k+1;

12. end if

13. end while

14. return s.

Figure 2. Pseudo-code of local search
procedure

2.3. Genetic Algorithm with Data Mining

With the aim of accelerating the occurrence of high
quality solutions in the population, we proposed the
incorporation of a Data Mining module in the GA.
This module aims to discover patterns (subroutes)
which are commonly found in the best solutions of the
population. This approach significantly differs from
current applications that combine genetic algorithms
and data mining, because until now, most of the
efforts deal with the development of GAs as
optimization methods to solve Data Mining problems
[13], such as the discovery of association and
classification rules and clustering, which is not our
case.

The process starts with the creation of an Elite Set

of solutions (ES). This subset of population is formed
by the s best solutions found so far and is updated
whenever an individual that is better than the worst
solution of the ES and different from all ES solutions
is generated. The ES will be the database in which we
will try to discover relevant patterns. To do this, we
developed a slight modified version of Apriori
algorithm [1], which discovers frequent sequences
(instead of association rules) in the ES. The algorithm
receives the minimum support as an input parameter,
i.e., the minimal statistical significance that one
sequence must satisfy to be considered frequent. Thus,
the algorithm will discover all sequences (subroutes in
the ES) of all sizes, which satisfy the minimal support.
For instance, a support of 0.5, indicates that at least
half of ES solutions must incorporate the considered
sequence. Once a set of frequent subsequences is
available, it is used to guide the construction of new
individuals, in the following way: new individuals are
built using a constructive algorithm like stated in
section 2.1, except that whenever a well is selected to
be added to the partial solution, a set of valid
subroutes is built. This set contains only frequent
subsequences whose wells do not appear in the partial
solution, starting with the selected well. If more than
one subroute is found, we randomly choose one from
available subsequences. The subsequence chosen is
incorporated in partial solution. Since time limit
constraint can easily be violated through the addition
of a subsequence of wells, a reparation operator is
applied to remove the last wells, if necessary. If no
valid subroute is found in data mining results, only the
selected well is added.

Each time that the Data Mining module is
triggered, B new individuals are generated using data
mining information. As in crossover operator,
population remains a fixed size. This process is
applied at a fixed interval of generations Q.

2.4. Genetic Algorithm with Data Mining and
Local Search

The application of Data Mining can be used
together with Local Search procedures, through the
application of Local Search in new individuals from
crossover operator and from Data Mining procedure.
This configures the last version of GA proposed here,
named Genetic Algorithm with Data Mining and
Local Search. The pseudo-code for this algorithm is
presented in Figure 3. Initial population is generated
using the constructive procedure (function GRC, line
3), which was described in section 2.1. Function

Offspring (line 7) indicates the application of
crossover operator using sp parent solutions from
population P to generate each one of the new
individuals. To keep a fixed population size through
generations, [worst individuals of population
(function Worst(P,)) are removed whenever f new
individuals are included. In the application of Data
Mining (lines 15 and 16), B new individuals are
generated using the discovered frequent sequences
SEQ by the GRCDM(SEQ, B) procedure (Greedy
Randomized Constructive with Data Mining), whose
functioning was described in section 2.3. The best
solution of all generations (with the highest value of
fitness function f{x), where x is the evaluated solution)
is kept and returned by the algorithm. Simpler
versions of this algorithm (GA without Local Search
and/or Data Mining) are just as the algorithm in
Figure 3, except by the removal of modules of Data
Mining (lines 15-21) and/or Local Search (function
LocalSearch).

Procedure GADMLS

Input: popSize, np, B, o, sup, i

P = GRC(a, popSize);

gen < 1; NewIndividuals < O&; EliteSet < &,

bestSolution < J; bestOfGen < O,

while not StoppingCriterionReached() do
Newlndividuals < Offspring(P, B, np);
for each ind € Newlndividuals do

9. ind < LocalSearch(ind);

10. end for

11. P« P Newlindividuals;

12. P« P-Worst (P, B);

13. Update EliteSet using P;

14. if ((gen mod p)= 0) and (gen>0) then

15. Discover sequences SEQ with minimum support

sup in EliteSet;

16. Newlndividuals <— GRCDM(SEQ, B);

17. for each ind € Newlndividuals do

18. ind < LocalSearch(ind);

19. end for

20. P <« P Newlindividuals;

21. P« P-Worst (P, B);

22. endif

23. bestOfGen < ind € P | f(ind) > fix) V x € P;

24. if f(bestOfGen) > f(bestSolution) then

25. bestSolution < bestOfGen;

26. end if

27. end while

28. return bestSolution.

PNAINRE LD =

Figure 3. Pseudo-code for GADMLS algorithm

3. Computational Results

To our best knowledge no set of instances were
made publicly available to the OCVRP. Thus a set of
instances (Table 1) with different characteristics were
generated. Symmetric instances incorporate distances
from instances from TSP-Library problems
(http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95). The source problems for symmetric
instances are shown in Table 1. For this kind of
instance, well production was randomly generated in
the range [1,100000]. Asymmetric instances were
randomly generated with distances in the range
[1,1000]. Well production for asymmetric instances
varies from 1 to 100. The time limit constraint for all
instances was defined in a way that no trivial solution
including all wells could be found.

Two sets of experiments were done to evaluate the
proposed algorithms. Different algorithms were built
by incorporating into our GA algorithm modules of
Local Search (GALS), Data Mining (GADM) or both
(GADMLYS).

Table 1. Problem instances

Problem Type Source | Vertices
1 Symmetric rat99 99
2 Asymmetric -- 300
3 Symmetric pr439 439
4 Symmetric d493 493
5 Asymmetric -- 500
6 Asymmetric -- 500
7 Symmetric d657 657
8 Asymmetric -- 1,000
9 Asymmetric -- 1,000

10 Symmetric pr1002 1,002

The execution parameters (Table 2) were defined
through previous experiments not reported here.

Table 2. Execution parameters

Parameter Value
Population size 500
Parents for crossover (np) 2
New individuals by generation (f) 50
Randomization degree (o) 0.5
Minimal support 0.5
Tournament size 2
Data Mining application interval (1) 20

In the first set of experiments, the objective was to
verify the average solution quality provided by each
algorithm when executed in fixed time. The following
time limits where imposed: 1,800 seconds for

instances 1 and 2; 2,700 seconds for instances 3-7 and
3600 for instances 8-10.

Average results from 4 executions for each
instance are presented in Table 3. As can be seen, the
GA algorithm often presents very poor results.
Although GALS and GADM significantly improve the
solution quality, there is not a clear dominance
between them. The best results for most of instances
occur in the GADMLS algorithm.

Table 3. Average percentage distance from
best know solution

Problem GA GALS GADM | GADMLS
1 14.44 7.19 5.14 0.00
2 6.78 2.71 1.59 0.00
3 4.12 1.93 0.00 0.91
4 5.09 2.23 1.92 0.00
5 6.90 1.69 3.17 0.00
6 6.21 0.37 3.26 0.00
7 4.09 3.26 1.08 0.00
8 5.93 0.25 0.98 0.00
9 6.23 0.00 2.13 0.41
10 1.16 2.59 0.00 1.85

In another set of experiments, the objective was to
verify the empirical probability distribution of
reaching a given sub-optimal target solution value (i.e.
find a solution with value as well as the target solution
value or better) in function of time in different
instances. The sub-optimal values were chosen in a
way that the slowest algorithm could terminate in a
reasonable amount of time. The execution times of
100 independent runs for each instance were
computed. The experiment design follows the proposal
of [2]. The results of each algorithm were plotted by
associating the i-th smallest running time # with a
probability p;=(i-0.5)/100, which generates points
z=(t;,p:;), for i=1, ...,100. Although we ran the
experiment for all instances, we included only the
results of tests (Figure 4) for one problem, whose
results illustrate the typical result obtained for all
problems. A simple analysis of the results can be done
considering the alignment of curves: leftmost aligned
curves indicate faster convergence of the algorithm,
while rightmost aligned curves indicate an algorithm
with slower convergence. The results show that the
simplest version (GA) takes considerably more time to
achieve high cumulative probability values (>0.5). By
means of an example, there is a probability of 50% of
GA to reach the target at 1,250 seconds, while for
other algorithms it takes approximately 850 seconds.

As can be seen in Figure 4, the superiority of
GADMLS algorithm upon other versions is not
explicit as the results showed in Table 3. We believe
that this result occurred due to the fact that the target
solution value was easier to find that the average
solution quality produced by GADMLS in experiments
with fixed time. The choice for an easy target solution
value was done because harder targets would consume
too much time in experiments with GA.

1

09
0.8 -
2
= 07
a
8
s 06
8
o 05r
=
S 04
=]
§ 0.3
0.2 r GA —= 4
GADM ------
0.1 GALS --+--- A
0 e) GADMLS
100 1000 10000

Time (seconds)

Figure 4. Cumulative probability distribution
of reaching target 18,300,000 for problem 7

4. Conclusions and Future Works

In this work we presented three improved versions
of an evolutionary algorithm. Versions which include
Local Search and/or Data Mining were presented.
Although applications of genetic algorithms with local
search are abundant in the literature, the application
of Data Mining to improve the results of evolutionary
algorithms is still scarce. The Data Mining module
proposed corresponds to an intensification strategy,
since it tries to discover good features in the best
solutions found so far and to apply them in the
generation of new solutions. The results show that
hybrid versions provide better results than the pure
genetic algorithm version. In most cases, the best
results were found with the application of Data
Mining joined with a Local Search procedure.

Since these hybrid versions consume considerable
computational resources, a promissing research area is
the development of parallel versions.

5. References

[1] R. Agrawal, and R. Srikant, “Fast algorithms for mining
association rules”, Proc. 20th Int. Conf. Very Large Data
Bases, VLDB. Morgan Kaufmann, 1994, pp. 487-499.

[2] RM. Aiex, M.G.C. Resende, and C.C. Ribeiro,
“Probability distribuition of solution time in GRASP: an
experimental investigation”, Journal of Heuristics, 8, 2002,
pp. 343-373.

[3] D.J. Aloise, J.A. Barros, and M. Souza, “A genetic
algorithm for a Oil Retrieval System” (In Portuguese), Proc.
of the XXXII Brazilian Symposium on Operations Research,
Sao Paulo, 2000.

[4] E. Balas, “The Prize Collecting Traveling Salesman
Problem”, Networks, 19, 1989, pp. 621-636.

[5]1 J. Beasley, “Population Heuristics”, Handbook of

Applied Optimization. Oxford University Press, Oxford,
2002, pp. 138-157.

[6] J.L Bresina, “Heuristic-biased stochastic sampling”,
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Portland, 1996, pp. 271-278.

[71 R.R. Colin, “Genetic algorithm”, Modern Heuristic
Techniques for Combinatorial Problems. McGraw-Hill book
company, 1995, pp. 151-196.

[8] LM.A. Drummond, D.S Vianna, and L.S. Ochi, “An
evolutionary hybrid metaheuristic for solving the vehicle
routing problem with heterogeneous fleet”, Lecture Notes in
Computer Science, 1391, 1998, pp. 187-195.

[9] LM.A. Drummond, L.S. Vianna, M.B. Silva, and L.S.
Ochi. “Distributed Parallel Metaheuristic based on GRASP
and VNS for solving The Traveling Purchaser Problem”,

Proc. of the 2002 Int. Conf. on Parallel and Distributed
Systems, Taiwan, 2002, pp. 257-263.

[10] F. Glover, M. Laguna, and R. Marti, “Fundamentals of
Scatter Search and Path Relinking”, Control and
Cybernetics, 39 (3), 2000, pp.653-684.

[11] D.E. Goldberg. Genetic Algorithms in Search
Optimization & Machine Learning. Addison-Wesley, Menlo
Park, 1989.

[12] B.L. Golden, L. Levy, and R. Vohra, “The Orienteering
Problem”, Naval Research Logistics, 24, 1987, pp. 307-
318.

[13] J. Han, and K. Micheline, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, 2000.

[14] J.H. Holland, Adaptation in natural and artificial
systems, University of Michigan Press, Ann Arbor, 1975.

[15] E.L Lawler, J.K Lenstra, A.H.G. Rinnooy Kan, and
D.B. Shmoys, “The Traveling Salesman Problem”, John
Willey & Sons, 1985.

[16] P. Moscato, “On Evolution, Search, Optimization
Algorithms and Martial Arts: Towards Memetic
Algorithms”, Report 826, Caltech Concurrent Computation
Program, California Institute of Technology, 1989.

[17] L. S. Ochi, D.S. Vianna, and L.M.A. Drummond, “An
Asynchronous Parallel Metaheuristic for the Period Vehicle
Routing Problem”, Future Generation Computer Systems,
17, 2001, pp. 379-386.

